

Comparison of multiclassification frameworks in the context of the ttH(bb) analysis

Patrick Golz | 14.11.2018

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Motivation:

- Check Standard Model nature of Higgs boson
- Measurement of Yukawa coupling
 - ightarrow Possible probe for new physics
- Coupling strength proportional to fermion mass \rightarrow Top-Higgs coupling
- Direct access to coupling $\rightarrow t\bar{t}H$
- $H \rightarrow b\overline{b}$ has largest branching ratio (58 %) $\rightarrow t\overline{t}H(b\overline{b})$
- Semileptonic channel: balance between background rejection and statistics

Basics

Comparision of the frameworks

Conclusio

Backup 00000000

Patrick Golz - NNFlow vs. TMVA

14.11.2018

Difficulties

- Very similar final states of ttH and tt + (b) jets background processes
- tt
 + (b) jets background exceeds tt
 H-signal significantly $(\sigma_{t\overline{t}b\overline{b}} \approx 5 \text{ pb vs. } \sigma_{t\overline{t}H} = 0.51 \text{ pb})$
- \rightarrow Use of multivariate analysis methods necessary
- \rightarrow Multiclassifiers especially promising

Basics

Comparision of the frameworks

Conclusi

Backup 00000000

Patrick Golz - NNFlow vs. TMVA

3/15

14.11.2018

Multiclassification has been done in a previous work by L. Hilser using following classes:

- ttH(bb): signal
- events in which a tt pair and a bb pair are created, are separated into three classes:
 - ttbb: events in which both bottom quarks are registered as separated jets
 - tt2b: events in which both b jets strongly overlap and can not be separated
 - ttb: events in which only one of the two bottom quarks is detected
- ttcc: events with a tt pair in connection with at least one additional jet containing at least one charmlike hadron
- tt+LF: events in which a tt pair in connection with lighter quark jets is created

Dataset

- Monte-Carlo events created for ttH analysis in 2016 with Powheg + Pythia 8
 - tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 tt

 <
 - tī
- Center of mass energy: 13 TeV
- Preselection cuts:
 - 6 or more jets with $P_t \ge 30 \text{ GeV}$
 - 2 or more b-tagged Jets
- 800 000 events after preselection
- Problem: TensorFlow can not work with ROOT files directly
- \rightarrow Are there more suitable frameworks available?

Frameworks

- TensorFlow: Framework for artificial neural networks
- Keras: easy to use high level API built on TensorFlow
- NNFlow:
 - Basic TensorFlow script for use in our analysis
 - Developed by M. Welsch, M. Lang and L. Hilser at ETP
- TMVA:
 - Multivariate analysis toolkit for ROOT
 - Provides Keras interface and internal DNN implementation

NNFlow has been used for multiclassification previously by L. Hilser \rightarrow Comparison of NNFlow and TMVA regarding performance and usability

Used TMVA methods:

- TMVA-DNN:
 - DNN directly implemented in TMVA
 - Optimized for use with ROOT files
- TMVA-Keras: Keras interface for TMVA
- TMVA-BDTG: gradient boosted decision tree

Basics

Configuation of NNFlow-DNN

The DNNs in TMVA have been modeled as close as possible after the NNFlow DNN \rightarrow comparability

hidden layer layout	100, 100
output nodes	6
input features	10 high level variables
activation function	elu
dropout probability	0.3
L2 regularisation	10 ⁻¹²
early stopping interval	15
optimizer	Adam
batch size	500

Basics

Patrick Golz - NNFlow vs. TMVA

- Versions: ROOT 6.12 / TMVA 4.3 (12.12.2017)
- TMVA-DNN has fewer options for activation functions and optimizers
- TMVA has very restricted options to analyze the training process
- NNFlow can be easily edited
 - \rightarrow Most of TFs options can be accessed

Training time

	overall time in s	time per epoch in s	evaluation time in μ s
NNFlow	731 ± 138	$\textbf{2,344} \pm \textbf{0,013}$	-
TMVA-DNN	165 ± 1	$0{,}244 \pm 0{,}002$	18 ± 1
TMVA-Keras	1016 ± 369	$\textbf{2,370} \pm \textbf{0,043}$	467 ± 6
TMVA-BDTG	2165 ± 22	-	$\textbf{220}\pm\textbf{8}$

to find the right hyperparameters, training has to be repeated many times

 \rightarrow faster training times is a big advantage

Basics

Backup

Patrick Golz - NNFlow vs. TMVA

14.11.2018

Absolute ROC values

Patrick Golz - NNFlow vs. TMVA

Basics

Relative deviation of ROC values

CMS simulation private work

Confusion matrices

Ba oc Pa

sics	Comparision of the frameworks	Conclusion		Backup
00000	0000000	0		00000000
trick Golz – NNFlow vs. TMVA			14.11.2018	13/15

- Considering the random fluctuations, all classifiers perform equally well
- Largest differences seen in confusion matrices of the TMVA-DNN → probably due to different optimizer and activation functions
- Very similar performance of the BDT compared to the DNNs

14.11.2018

Conclusion

- TMVA methods achieve similar results to NNFlow and can be used as a viable alternative
- Advantages:
 - easy to use
 - can use ROOT files directly
 - can be used with C++
 - \rightarrow easy to integrate into the workflow
 - considerably shorter training times for TMVA-DNN
 - $\hfill easy to compare different classifiers <math display="inline">\rightarrow$ perfect for quickly testing new ideas
- Disadvantages:
 - configuration options are limited

Conclusion

Backup 00000000

Backup

Basics

Comparision of the frameworks

Conclusion O

14.11.2018

Backup •0000000 16/15

Configuation of NNFlow-DNN

hidden layers	100, 100
activation function	elu
dropout probability	0.3
L2 regularisation	10 ⁻¹²
early stopping interval	15
optimizer	Adam
β_1	0.9
β_2	0.999
ϵ	10^{-8}
learning rate	$3 \cdot 10^{-5}$
learning rate decay	deactivated

Basics

Comparision of the frameworks

Conclusio

14.11.2018

Backup ○●○○○○○○ 17/15

Configuration of TMVA-Keras

hidden layers	100, 100
activation function	elu
dropout probability	0.3
L2 regularisation	10 ⁻¹²
early stopping interval	10
optimizer	Adam
β_1	0.9
β_2	0.999
ϵ	10^{-8}
learning rate	$3 \cdot 10^{-6}$
learning rate decay	deactivated

Basics

Comparision of the frameworks

Conclusio

14.11.2018

Backup 0000000 18/15

Configuration of TMVA-DNN

hidden layers 100,	100
activation functions relu	
dropout probability 0.7	
early stopping interval 10	
learning rate 10 ⁻²	2
momentum dead	ctivated
L2 regularisation dead	ctivated
batch size 500	

Basics

Conclusion O

14.11.2018

Backup 00000000 19/15

Configuration of TMVA-BDTG

number of trees	1000
boosting	Gradient Boosting
shrinkage	0.1
minimal node size	1%
bagged boosting	active
bagged sample fraction	0.5
number of cuts	20
max depth	2

Basics

Conclusion O Backup 00000000 20/15

14.11.2018

ROC curves for multiclassification are calculated as follows:

$$(x, y) = \left(\frac{1}{N}\sum s, \frac{1}{N_b}\sum_i \frac{1}{N_i}\sum b_i\right)$$
(1)

Basics	

Comparision of the frameworks

onclusion Backup 00000000 14.11.2018 21/15

Input features

- ΔR between two b-tagged jets mit b-Tag, mean over all possible combinations
- mass of vector sum of the lepton and the b-tagged jets with smallest ΔR to the lepton
- CSV value of the jet with the second highest csv value
- specifies if an event contains more likely 4 or 2 b-jets
- mean CSV value of all b-tagged jets
- variance of the CSV values
- $\Delta\eta$ between the two b-tagged jets with the smallest ΔR
- ΔR between the lepton and the jet with the smallest ΔR to the lepton
- ΔR between the two b-tagged jets with the smallest ΔR
- mass of vector sum of two b-tagged jets, mean over all possible combinations

 $\Delta\Phi$: difference between azimuth angles; $\Delta\eta$ difference between pseudorapidities; $\Delta R = \sqrt{\Delta\Phi^2 + \Delta\eta^2}$

Basics Comparision of the frameworks 000000 000000 Patrick Golz – NNFlow vs. TMVA Backup 000000●0 22/15

Discrimination plots

Basics 000000 Patrick Golz -

	Comparision of the frameworks	Conclusion O		Backup ooooooo●
NNFlow vs. TMVA			14.11.2018	23/15