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Motivation:
Check Standard Model nature of Higgs boson
Measurement of Yukawa coupling
→ Possible probe for new physics
Coupling strength proportional to fermion mass→ Top-Higgs coupling
Direct access to coupling→ ttH
H→ bb has largest branching ratio (58 %)→ ttH(bb)
Semileptonic channel: balance between background rejection and statistics
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Difficulties

Very similar final states of ttH and tt + (b) jets background processes

tt + (b) jets background exceeds ttH-signal significantly
(σt t̄bb̄ ≈ 5 pb vs. σt t̄H = 0.51 pb)

→ Use of multivariate analysis methods necessary
→ Multiclassifiers especially promising
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Output classes

Multiclassification has been done in a previous work by L. Hilser using
following classes:

ttH(bb): signal

events in which a tt pair and a bb pair are created, are separated into three classes:

ttbb: events in which both bottom quarks are registered as separated jets
tt2b: events in which both b jets strongly overlap and can not be separated
ttb: events in which only one of the two bottom quarks is detected

ttcc: events with a tt pair in connection with at least one additional jet containing at
least one charmlike hadron

tt+LF: events in which a tt pair in connection with lighter quark jets is created

Basics Comparision of the frameworks Conclusion Backup

Patrick Golz – NNFlow vs. TMVA 14.11.2018 4/15



Dataset

Monte-Carlo events created for ttH analysis in 2016
with Powheg + Pythia 8

ttH(bb)
tt

Center of mass energy: 13 TeV
Preselection cuts:

6 or more jets with Pt ≥ 30 GeV
2 or more b-tagged Jets

800 000 events after preselection

Problem: TensorFlow can not work with ROOT files directly
→ Are there more suitable frameworks available?
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Frameworks

TensorFlow: Framework for artificial neural networks

Keras: easy to use high level API built on TensorFlow
NNFlow:

Basic TensorFlow script for use in our analysis
Developed by M. Welsch, M. Lang and L. Hilser at ETP

TMVA:
Multivariate analysis toolkit for ROOT
Provides Keras interface and internal DNN implementation
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Frameworks

NNFlow has been used for multiclassification previously by L. Hilser
→ Comparison of NNFlow and TMVA regarding performance and usability

Used TMVA methods:

TMVA-DNN:
DNN directly implemented in TMVA
Optimized for use with ROOT files

TMVA-Keras: Keras interface for TMVA

TMVA-BDTG: gradient boosted decision tree
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Configuation of NNFlow-DNN

The DNNs in TMVA have been modeled as close as possible after the
NNFlow DNN
→ comparability

hidden layer layout 100, 100
output nodes 6
input features 10 high level variables
activation function elu
dropout probability 0.3
L2 regularisation 10−12

early stopping interval 15
optimizer Adam
batch size 500
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Calibration options

Versions: ROOT 6.12 / TMVA 4.3 (12.12.2017)

TMVA-DNN has fewer options for activation functions and optimizers

TMVA has very restricted options to analyze the training process

NNFlow can be easily edited
→ Most of TFs options can be accessed
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Training time

overall time in s time per epoch in s evaluation time in µs

NNFlow 731± 138 2,344± 0,013 -
TMVA-DNN 165± 1 0,244± 0,002 18± 1
TMVA-Keras 1016± 369 2,370± 0,043 467± 6
TMVA-BDTG 2165± 22 - 220± 8

to find the right hyperparameters, training has to be repeated many
times
→ faster training times is a big advantage
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Absolute ROC values
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Relative deviation of ROC values
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Confusion matrices
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Performance results

Considering the random fluctuations, all classifiers perform equally
well

Largest differences seen in confusion matrices of the TMVA-DNN
→ probably due to different optimizer and activation functions

Very similar performance of the BDT compared to the DNNs
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Conclusion

TMVA methods achieve similar results to NNFlow and can be used as
a viable alternative
Advantages:

easy to use
can use ROOT files directly
can be used with C++
→ easy to integrate into the workflow
considerably shorter training times for TMVA-DNN
easy to compare different classifiers→ perfect for quickly testing new
ideas

Disadvantages:
configuration options are limited
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Backup

Basics Comparision of the frameworks Conclusion Backup

Patrick Golz – NNFlow vs. TMVA 14.11.2018 16/15



Configuation of NNFlow-DNN

hidden layers 100, 100
activation function elu
dropout probability 0.3
L2 regularisation 10−12

early stopping interval 15

optimizer Adam
β1 0.9
β2 0.999
ε 10−8

learning rate 3 · 10−5

learning rate decay deactivated
batch size 500

Basics Comparision of the frameworks Conclusion Backup

Patrick Golz – NNFlow vs. TMVA 14.11.2018 17/15



Configuration of TMVA-Keras

hidden layers 100, 100
activation function elu
dropout probability 0.3
L2 regularisation 10−12

early stopping interval 10

optimizer Adam
β1 0.9
β2 0.999
ε 10−8

learning rate 3 · 10−6

learning rate decay deactivated
batch size 500
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Configuration of TMVA-DNN

hidden layers 100, 100
activation functions relu
dropout probability 0.7
early stopping interval 10
learning rate 10−2

momentum deactivated
L2 regularisation deactivated
batch size 500
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Configuration of TMVA-BDTG

number of trees 1000
boosting Gradient Boosting
shrinkage 0.1
minimal node size 1%
bagged boosting active
bagged sample fraction 0.5
number of cuts 20
max depth 2
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ROC curves for multiclassification are calculated as follows:
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av. ROC_AUC = 0.671
H  ROC_AUC = 0.716tt

  ROC_AUC = 0.685b+btt
+2b  ROC_AUC = 0.642tt
+b  ROC_AUC = 0.579tt

  ROC_AUC = 0.654c+ctt
+lf  ROC_AUC = 0.752tt
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Input features

∆R between two b-tagged jets mit b-Tag, mean over all possible combinations

mass of vector sum of the lepton and the b-tagged jets with smallest ∆R to the lepton

CSV value of the jet with the second highest csv value

specifies if an event contains more likely 4 or 2 b-jets

mean CSV value of all b-tagged jets

variance of the CSV values

∆η between the two b-tagged jets with the smallest ∆R

∆R between the lepton and the jet with the smallest ∆R to the lepton

∆R between the two b-tagged jets with the smallest ∆R

mass of vector sum of two b-tagged jets, mean over all possible combinations

∆Φ: difference between azimuth angles; ∆η difference between
pseudorapidities; ∆R =

√
∆Φ2 + ∆η2
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Discrimination plots
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