Leading orders	Next-to-leading orders	Next-to-leading order results	

NLO EW/QCD corrections for W⁺Z scattering at the LHC pp $\rightarrow e^+ \nu_e \mu^+ \mu^- jj + X @ O(\alpha_s \alpha^6)$ and $O(\alpha^7)$ for $\sqrt{s} = 13 \text{ TeV}$

Christopher Schwan

with: Ansgar Denner, Stefan Dittmaier, Philipp Maierhöfer, Mathieu Pellen

VBSCAN@Ljubljana, 11 February

erc

0000 0000000 00 000 00					
	0000	0000000	00	000	00

Outline

Introduction

2 Leading orders

Next-to-leading orders

4 Next-to-leading order results

5 Summary

Introduction				
0000	0000000	00	000	00

Vector-boson scattering in a nutshell

 \rightarrow Scattering of two (massive) vector-bosons, e.g.:

• $W^{\pm}W^{\pm} \rightarrow W^{\pm}W^{\pm}$ ("like-sign W scattering") \rightarrow focus of WG1 so far: [A. Ballestrero et al.] • $W^{\pm}Z \rightarrow W^{\pm}Z$

Vector-boson scattering (VBS) physics program:

- Constrain anomalous quartic gauge couplings (with triple-gauge boson prod.)
- Measure Higgs-vector-vector couplings, complementary to on-shell Higgs decay measurements
- Probe EW symmetry breaking: interplay between triple and quartic gauge couplings and the Higgs boson(s); large cancellations for longitudinal VBS: ensures tree-level unitarity
- $\rightarrow\,$ Precise prediction of the SM cross section needed

Experiment: $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj + X$

- ATLAS 8 TeV: [CERN-EP-2016-017]
- ATLAS 13 TeV: Obsers. with 5.6 σ sig. $(\mathcal{L} = 36.1 \text{ fb}^{-1})$ [ATLAS-CONF-2018-033]
- ATLAS 13 TeV: Obsers. with 5.3 σ sig. $(\mathcal{L} = 36.1 \, \mathrm{fb}^{-1})$ [CERN-EP-2018-286]
- $\rightarrow\,$ talk by Narei Lorenzo Martinez

	Jan 2019			CN	IS Prelimina	ry
	CMS EV	VK measurements vs.	7 TeV CMS me	asurement (stat,stat+sys)		1
	т	heory	8 TeV CMS me	asurement (stat,stat+sys)		
			13 TeV CMS m	easurement (stat,stat+sys)		
	qqW	- -		$0.84 \pm 0.08 \pm 0.18$	19.3 fb ⁻¹	
	qqZ			$0.93 \pm 0.14 \pm 0.32$	5.0 fb ⁻¹	
	qqZ			$0.84 \pm 0.07 \pm 0.19$	19.7 fb ⁻¹	
	qqZ	- <mark></mark> -		$0.98 \pm 0.04 \pm 0.10$	35.9 fb ⁻¹	
	γγ→WW	· · ·		$1.74 \pm 0.00 \pm 0.74$	19.7 fb ⁻¹	
	qqWγ			$1.77 \pm 0.67 \pm 0.56$	19.7 fb ⁻¹	
	ss WW 🛏			$0.69 \pm 0.38 \pm 0.18$	19.4 fb ⁻¹	
	ss WW			$0.90 \pm 0.16 \pm 0.08$	35.9 fb ⁻¹	
	qqZγ			$1.48 \pm 0.65 \pm 0.48$	19.7 fb ⁻¹	
(qqWZ 🛏			0.82 ± 0.47	35.9 fb ⁻¹	D
1	qqZZ			$1.38 \pm 0.64 \pm 0.38$	35.9 fb ⁻¹	T
htt	0 All results at: p://cern.ch/go/pNj7	1 Pr	roduction C	ross ³ Section Ratio	$\sigma_{exp}/\sigma_{the}$	5

- CMS 13 TeV: Meas. with 1.9 σ sig. ($\mathcal{L}=35.9\,{\rm fb}^{-1})$ [CMS-PAS-SMP-18-001]
- CMS 13 TeV: Meas. with 2.2 σ sig. $(\mathcal{L} = 35.9 \text{ fb}^{-1})$ [CMS-SMP-18-001]

Introduction	Leading orders	Next-to-leading orders	Next-to-leading order results	
0000				

Theory: pp $\rightarrow e^+ \nu_e \mu^+ \mu^- jj + X$

- All LOs presented in Sec. V.3 of the SM Les Houches 2017 report [Bendavid et al.]: QCD (~80%) dominates over EW
- Approx. $\mathcal{O}(\alpha_{\rm s} \alpha^6)$: +4% [Bozzi, Jäger, Oleari, Zeppenfeld]
- $\mathcal{O}(\alpha_s^3 \alpha^4)$ calculation available [Campanario, Kerner, Ninh, Zeppenfeld]
- Parton-shower effects of the EW production [Jäger, Karlberg, Scheller]
- $\rightarrow \mathcal{O}(\alpha^7)$ EW corrections desirable, because like-sign case shows large corrections (-16%)
- \rightarrow calculate full $\mathcal{O}(\alpha_{\rm s} \alpha^6)$ for an updated setup, check validity of approximations

Introduction		
0000		

Fiducial phase space volume and parameters

Cuts are exactly the "Loose Fiducial" cuts defined by $\mbox{CMS}^1\mbox{[CMS-PAS-SMP-18-001]}:$

- At least two R= 0.4 anti- $k_{\rm t}$ jets with $p_{\rm T}>$ 30 GeV, $|\eta|<$ 4.7, and $\Delta R_{\rm j\ell}>$ 0.4
- $M_{
 m j_1j_2} > 500~{
 m GeV}$, $\Delta\eta_{
 m j_1j_2} > 2.5$
- $p_{\mathrm{T},\ell} > 20\,\mathrm{GeV}$ and $|y_\ell| < 2.5$
- $|M_{\mu\bar{\mu}} M_Z| < 15 \, {
 m GeV}$
- $M_{\ell\ell} >$ 4.0 GeV and $M_{3\ell} >$ 100.0 GeV

Other:

- Photons recombined with charged particles using anti- $k_{\rm t}$ algorithm with R=0.1
- PDFs: NNPDF31_nlo_as_0118_luxqed
- $\sqrt{s} = 13 \, \text{TeV}$

Complex mass scheme [Denner, Dittmaier, Roth, Wackeroth][Denner, Dittmaier, Roth, Wieders], input parameters:

•
$$G_{\mu} = 1.6638 \times 10^{-5} \, {
m GeV}^{-2}$$

- $M_{\rm W} = 80.3530 \, {\rm GeV}, \, \Gamma_{\rm W} = 2.0843 \, {\rm GeV}$
- $M_{\rm Z}=91.1535\,{
 m GeV},\,\Gamma_{\rm Z}=2.4943\,{
 m GeV}$
- $M_{
 m H} = 125.0 \, {
 m GeV}, \, \Gamma_{
 m H} = 4.07 imes 10^{-3} \, {
 m GeV}$

with EW coupling calculated as:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathsf{W}}^2 \left(1 - \frac{M_{\mathsf{W}}^2}{M_{\mathsf{Z}}^2} \right)$$

Scale choice:

- $\mu = \sqrt{\textit{p}_{T,j_1} \cdot \textit{p}_{T,j_2}}$ [Denner, Hošeková, Kallweit]
- 7-point scale variation to estimate pert. uncertainty

¹Results for an ATLAS-like setup in backup-slides

Leading orders		

Outline

Introduction

2 Leading orders

- Overview
- Integrated cross sections
- Distributions

Next-to-leading orders

4 Next-to-leading order results

5 Summary

Leading orders	Next-to-leading orders	Next-to-leading order results	
• 0000 000			

Overview: leading orders

For pp $\rightarrow e^+ \nu_e \, \mu^+ \mu^- jj + X$ two different leading orders (LO): $\mathcal{O}(g_s^2 e^4)$ and $\mathcal{O}(e^6)$.

We divided them into five (mutually exclusive) classes:

- $\mathcal{O}(\alpha^6)$ electroweak production with quark-quark initial state (but without bottom-quarks)
- **2** $\mathcal{O}(\alpha_s^2 \alpha^4)$ strong production (without bottom-quarks)
- $\ \, {\cal O}(\alpha_{\rm s}\alpha^5) \ {\rm quark-quark} \ {\rm interference}$
- $\mathcal{O}(\alpha^6)$ double-photon initiated and $\mathcal{O}(\alpha_s \alpha^6)$ single-photon initiated
- (a) $\mathcal{O}(\alpha^6)$ and $\mathcal{O}(\alpha_s^2 \alpha^4)$ with bottom-quarks

0000 0 000 000 00 000 00	Leading orders	Next-to-leading orders	Next-to-leading order results	
	0000000			

Electroweak production LOs

- 40 different partonic channels at $\mathcal{O}(\alpha^6)$
- contain the vector-boson scattering subdiagrams,
- and "semi-leptonic triple-gauge-boson production" processes ($W^{\pm}ZZ$ and $W^{+}W^{-}Z$),
- and other double-, single, non-resonant diagrams

Leading orders		
0000000		

Strong production LOs

- → In comparison to like-sign W-scattering gluons are possible at LO (charge)
- 8 additional diagrams with two gluons, making up 66 % of the cross section
- \rightarrow in total the ${\cal O}(\alpha_{\rm s}^2\alpha^4)$ is 4.3 times larger than the electroweak LOs

	Leading orders			
0000	0000000	00	000	00

Photon-initiated LOs

- 2 double photon MEs at $\mathcal{O}(\alpha^6)$ (tiny contribution)
- 12 photon–gluon MEs at $\mathcal{O}(\alpha_{\rm s}\alpha^5)$ (very small contribution)
- remember: no final state photons at LO because of $n_{\rm j} \ge 2$

Leading orders	Next-to-leading orders	Next-to-leading order results	
00000000			

Bottom-quark LOs

- 12 MEs with bottom-quarks
- ightarrow "top-Z-jet production" for the bu/bc ightarrow e⁺ $\nu_{\rm e} \, \mu^+ \mu^-$ bu/c
 - only resonant tops, no resonant anti-tops because of W⁺ → up-bottom contribution dominates over all others (90%)
 - contribution comparible in size with the EW LOs
 - separable with b-tagging

	Leading orders			
0000	00000000	00	000	00

LO integrated cross sections

Integrated xs for pp $\rightarrow e^+ \nu_e \, \mu^+ \mu^-$ jj @ $\sqrt{s} = 13$ TeV:

Sum [fb]	EW [fb]	QCD [fb]	Int. [fb]
1.55 100 %	$0.255^{+9.03\%}_{-7.75\%}_{16.4\%}$	$\frac{1.10^{+37.0\%}_{-24.9\%}}{70.6\%}$	$0.00682^{+18.4\%}_{-14.4\%}_{0.439\%}$

Photons [fb]	Bottom-quarks [fb]
0.000 988 ^{+11.5} % 0.0636 %	$0.195^{+3.59\%}_{-7.22\%}_{12.5\%}$

- very large QCD contributions mainly due to gluon-PDF
- small interference (known from like-sign VBS)
- \bullet smaller EW contribution compared to like-sign VBS (\rightarrow Z-boson)
- $\bullet\,$ photon contributions completely irrelevant \rightarrow leave out photon-initiated at NLO
- Important: bottom-quark contributions

Leading orders	Next-to-leading orders	Next-to-leading order results	
00000000			

Jet observables

- $\delta_{\rm all}:$ percentage of each contr. to the sum
- Crossover between EW/bottom-quarks at $M_{
 m j_1 j_2} pprox 900 \, {\rm GeV}$ and EW/QCD at $M_{
 m j_1 j_2} pprox 2100 \, {\rm GeV}$
- interesting behavior of the subleading jet for bottom-quark contributions for the central region
- large QCD uncertainty band due to $\alpha_{\rm s}^2$ vs. $\alpha_{\rm s}^0$ in the EW

Leading orders	Next-to-leading orders	Next-to-leading order results	
0000000			

Leptonic observables

• Cuts $M_{\mu^-\mu^+} < M_{\rm Z} + 15 \,{\rm GeV}$ and $p_{{
m T},\ell} > 20 \,{
m GeV}$ limit $\Delta \eta_{\mu^-\mu^+} < 3.4$, so that $\Delta R < 4.6$

$$\cosh \Delta \eta_{\ell_1 \ell_2} = \frac{M_{\ell_1 \ell_2}}{2 \rho_{\mathrm{T}, \ell_1} p_{\mathrm{T}, \ell_2}} + \cos \phi_{\ell_1 \ell_2}$$

Introduction Lea		Next-to-leading orders	Next-to-leading order results	
0000 00	000000	00	000	00

Outline

Introduction

2 Leading orders

Next-to-leading orders Overview

Mext-to-leading order results

	Next-to-leading orders	
0000	•0	

 $\mathcal{O}(\alpha^7)$ real and virtual correction diagrams

- Real radiation \rightarrow add photon
- Neglect real MEs with initial state photons
- Loops with 8-point functions, different complex masses
- More diagrams with Higgs bosons!
- Up to 83,000 diagrams per initial state

	Next-to-leading orders	
	00	

 $\mathcal{O}(\alpha_{\rm s} \alpha^6)$ mixed corrections: "QCD"

- \rightarrow Correction is neither purely QCD/EW, it is mixed
- photon initial-state singularities: cancelled with collinear counterterm (PDFs)
- photon final-state singularities: require photon-to-jet transition functions (strictly speaking)
- many partonic channels and contributions: 40 virtuals, 16 EW reals, 40+28 QCD reals, 16 EW int. dipoles, 40 QCD int. dipoles, ...

			Next-to-leading order results	
0000	0000000	00	000	00

Outline

Introduction

2 Leading orders

Next-to-leading orders

4 Next-to-leading order results

- Integrated cross sections
- Distributions

Summary

0000 0000000 00 000 00				Next-to-leading order results	
	0000	0000000	00	000	00

Integrated cross section

Integrated xs for pp $\rightarrow e^+ \nu_e \mu^+ \mu^- jj + X @ \sqrt{s} = 13 \text{ TeV}$:

LO ² [fb]	NLO EW [fb]	NLO QCD [fb]	NLO EW+QCD [fb]
$0.255^{+9.03\%}_{-7.75\%}$	$0.214^{+8.62\%}_{-7.43\%}_{-16.0\%}$	$0.250^{+0.970\%}_{-0.960\%}\\-1.93\%$	$0.209^{+0.750\%}_{-1.08\%}\\-17.9\%$

Please note: NLO QCD (and NLO EW+QCD) are preliminary

- $\bullet\,$ No dep. on $\mu_{\rm R} \rightarrow$ No reduction of the pert. uncertainty for the NLO EW
- Large corrections on the integrated cross section, comparable to like-sign scattering
- Corrections are larger in specific regions of $p_{\rm T}$ distributions
- QCD corrections rather small

²only $\mathcal{O}(\alpha^6)$

	Next-to-leading order results	
	000	

Jet observables

- Please note: NLO QCD (and NLO EW+QCD) are preliminary
- \bullet EW/QCD corrections basically flat for $M_{\rm j_1,j_2}$
- $M_{\rm e^+\mu^-}$ very flat conc. EW and QCD corrections
- $\bullet~{\rm EW}$ corrections become more negative for large $p_{{\rm T},{\rm j}_1}$

Leading orders	Next-to-leading orders	Next-to-leading order results	
		000	

Leptonic observables

- Please note: NLO QCD (and NLO EW+QCD) are preliminary
- EW corrections "remove" events where the muons are close

Leading orders	Next-to-leading orders	Next-to-leading order results	Summary
			00

Summary

- \bullet After $W^+W^+,\,W^+Z$ scattering is the next important channel for VBS
- Large EW corrections for a realistic setup: -16%
- $\bullet\,$ Even larger corrections for some $p_{\rm T}$ observables
- First preliminary results for the complete $\mathcal{O}(\alpha_{\rm s}\alpha^6)$: small corrections, -2%
- Confirms that $\mu=\sqrt{\textit{p}_{\mathrm{T},j_{1}}\cdot\textit{p}_{\mathrm{T},j_{2}}}$ is (still) a good scale choice

Leading orders	Next-to-leading orders	Next-to-leading order results	Summary
			00

Acknowlegments

Thank you!

- We acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG and grant DI 784/3.
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006.

LO distributions (I)

LO distributions (II)

LO distributions (III)

LO distributions (IV)

LO distributions (V)

LO distributions (VI)

LO distributions (VII)

NLO distributions (I)

NLO distributions (II)

NLO distributions (III)

NLO distributions (IV)

NLO distributions (V)

NLO distributions (VI)

NLO distributions (VII)

Fiducial phase space volume for the ATLAS-like setup

Cuts chosen similar to the ATLAS 8 TeV-analysis [CERN-EP-2016-017]:

- At least two R= 0.4 anti- $k_{\rm t}$ jets with $p_{\rm T}>$ 30 GeV, $|\eta|<$ 4.5, and $\Delta R_{\rm i\ell}>$ 0.3
- $M_{
 m j_1j_2}>$ 500 GeV, no $\Delta\eta_{
 m j_1j_2}\,\,{
 m cut}^2$
- $p_{\mathrm{T},\ell} > 20\,\mathrm{GeV}$ and $|y_\ell| < 2.5$
- $p_{\mathrm{T,miss}} > 30 \,\mathrm{GeV}$

•
$$|M_{\mu\bar{\mu}} - M_Z| < 10 \, \text{GeV}$$

• $\Delta R_{\ell\ell} > 0.3$

Other:

- Photons recombined with charged particles using anti- $k_{\rm t}$ algorithm with R=0.1
- PDFs: NNPDF30_nlo_as_0118_qed
- $\sqrt{s} = 13 \, \text{TeV}$

Complex mass scheme [Denner, Dittmaier, Roth, Wackeroth][Denner, Dittmaier, Roth, Wieders], input parameters:

•
$$G_{\mu} = 1.663787 \times 10^{-5} \, {\rm GeV}^{-2}$$

•
$$M_{\rm W} = 80.357\,97\,{\rm GeV},\ \Gamma_{\rm W} = 2.084\,30\,{\rm GeV}$$

•
$$M_{\rm Z} = 91.153\,48\,{\rm GeV},\,\Gamma_{\rm Z} = 2.494\,27\,{\rm GeV}$$

•
$$M_{\rm H} = 125.0 \,{
m GeV}, \, \Gamma_{\rm H} = 4.07 \times 10^{-3} \,{
m GeV}$$

with coupling calculated as:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathsf{W}}^2 \left(1 - \frac{M_{\mathsf{W}}^2}{M_{\mathsf{Z}}^2} \right)$$

Scale choice: $\mu_{\rm F} = (1/2, 1, 2) \cdot M_{\rm W}$ \rightarrow No dependence on $\mu_{\rm R}$, since processes do not depend on $\alpha_{\rm s}!$

 $^{^{1}}$ Unused in the ATLAS 8 TeV-analysis, but used both in the ATLAS and CMS 13 TeV analyses

All distributions

Distributions (I)

All distributions

Distributions (II)

Distributions (III)

Distributions (IV)

Distributions (V)

Distributions (VI)

