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Infroduction

Higgs couplings measurements can be reinferpreted in specific theory models

= |Increasingly relevant as measurements become finer-grained and more
precise, e.g. EFT reinterpretation of STXS.

Within ATLAS, can be done at the workspace level. For external use, provide
 Central values + uncertainties of POls
* POI correlation matrix

— Full description of the measurement in the Gaussian approximation.

However:
— Doesn’t account for non-Gaussian behavior = See previous presentation
— Effect of NPs already absorbed through profiling, cannot be separated out

= |f reinterpretation involves systematics that are correlated with
experimental ones, the correlation cannot be included.
— e.g. theory uncertainties


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-018/

Toy Model

Check the effect of these limitafions on a foy model, loosely modeling the
couplings H—yy measurement.

— 2-bin counting measurement (0-jet/2-jet)
— measure O, O, (actually & x Byy)

Parameter values:
* Oy = 102 fo with 96% / 4% split between O-jet and 2-jet bins

« O, =8fb,dlinthe 2-jet bin

* Acceptance x efficiency: 40% in both bins

* Adjust background levels to match stat uncertainties from H-yy.
« L=1580fb"

« Systematics: Log-normal impact, values:

ggF/0-jet ggF/2-jet VBF Experimental Experimental

Acceptance Acceptance Acceptance  syst., 0-jet syst., 2-jet
O-jet 2% - 2% 5% -
2-jet - 15% - - 5%
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SM expected results:
ooor = 102718-2(stat) 5 (exp) %4> (theo) fb
over = 8.0 & 2.1(stat)+8 I(exp) Q- (theo) fb
— Good agreement with H-Yyy results

—~ Compare:

 Profile likelihood scan using the full
likelihood

* PLR scan using a Gaussian likelihood
based on HESSE covariance matrix
at best-fit point.

- Measurement is not quite Gaussian,
but not catastrophically so.

Same exercise without systematics:
= Excellent agreement

— Most non-Gaussianity comes from
the log-normal uncertainties



Reinterpretation

OggF — MggF GggF,SM

) framework. Ovgr — Uypr Ovgr,sm

Reinterpretation in simple (Mogrs My

— Include 5% uncertainties on g, values
— Correlafe o, uncertainty with ggF/0jet acceptance uncerfainty

— Correlate o uncertainty with VBF acceptance uncertainty

VBF.SM
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1. Non-Gaussian effects
2. Uncorrelated syst. add in quadrature, vs. correlated syst add linearly
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Full vs. Gaussian comparisons

Implement uncorrelated interpretation systematics in full likelihood
to compare with Gaussian case:

[T

o

>
=.

2.5 2.5

Full likelihood

LL
T & _ _]
- Full likelihood, uncorr. interp. syst. . j_> - .
- ] - Full likelihood, uncorr. interp. syst. ]
o Gaussian likelihood, uncorr. interp. syst. - ol Full likelihood, no syst. N
E . ‘,-r“ll'“ .......... LT E E -1,3.:';-'&:'}1!1.!5'{..:.5&.:.'-.. E
1.5 e Ty . 1.5 ]
N o %y, ] N ]
- : , - - -
i SR E
§ RS . § .
- * “. _ = — —_ i
0.5 S o lo — 0.5~ i R © B
- h"ﬁ., et _ B 3’-%;’“‘.—‘. "1.;'0' .
L Smapgmes~tt e 95% C.L. — - St £ 95% C.L. n
= ! | ! ] ] | ] ] ] | ! ] ] | ] ] | : | ] | | | | | | :
0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6
Hoor Hoor

Difference partially due to non-Gaussianity but larger effect from lack of
correlation of systematics

How to properly correlate interpretation syst. in the Gaussian case as well ?
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Correlating NPs: Full Covariance u 6

. . . . C = CM CM9 u
Option 1: provide the full covariance matrix = | AT
Cu@ CH 9
Can use it to build a Gaussian version of the likelihood:
Impact
1 AT R Stat-only of NPs on
LGauss(fu’ 9) = exp|—— l‘u ‘l;t H lu ‘lf covariance POls
2 16—-6 0—06 matrix v 0 /
\- 4
Cstat4_A
Profile © in the Gaussian likelihood: H = C—l — | A \
Then POls have Hessian matrix !
A" |H, ©
HM':Cstat—A HH A’ —C , 0
So profiling L, (M. 8) gives back the same T

Post-fit NP uncertainties

covariance matrix as profiling the full likelihood _
(should be ~Identity)

For reinterpretations, can
reparameterize, extend, ... : L(M’ ‘9) > LGauss(lu( Ki» 9), ‘9) Lext<Ki’ 9)



Correlating NPs: Decomposed Covariance

Option 2 : Provide covariance matrices for stat-only case, and after freeing
each relevant NP one by one:;

C=Cu+Cy+Cy+...

stat

— Generalizes uncertainty decomposition Cp, = Cyusg — C
— Provides impact of each NP

stat

Can reconstruct an approximate form of the full Hessian:
c;; + CouVCy, + CouVCy,
H=|+c!

stat CB 1+ CQ C'stat Cl @
—Cst;tr @ ]-+ CB Cstat Cl

— Requires to provide separately the signs of the impacts of NPs on POls

— Doesn’t account for correlations between the POls

— Formulas above valid at leading order in syst/stat, but can also be
computed exactly



Application to the Toy Example
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Very similar results from both options
Match the full likelihood results, up to non-Gaussian effects



Summary

In this example, both options do what was expected:
- Describe well the Gaussian approximation to the likelihood
— Allow proper correlations between measurement and interpretation

— However non-Gaussian behavior is not quite negligible, mainly due to log-
normal implementation of systematics.
= Need to check other cases

Is it something to pursue for couplings results ? Ideas on a preferred option ?

Covariance matrix decomposition

Full covariance matrix ® Generadlizes uncertainty decomposition

® Provides all the information in one — infegrates better in existing results ?

go ® Smaller mafrices Nyo,* x Ny o wes:

© Large matrix : (Npg + Ny oory e’ © Noft quite the full information : missing NP « NP

correlations

© Needs separate signs matrix : sign of impact
for each (POI, NP) pair
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