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Introduction
Higgs couplings measurements can be reinterpreted in specific theory models

 ⇒ Increasingly relevant as measurements become finer-grained  and more 
precise,  e.g. EFT reinterpretation of STXS.

Within ATLAS, can be done at the workspace level. For external use, provide 
• Central values + uncertainties of POIs
• POI correlation matrix
→ Full description of the measurement in the Gaussian approximation. 

However:
→ Doesn’t account for non-Gaussian behavior  See previous presentation⇒ 
→ Effect of NPs already absorbed through profiling, cannot be separated out
      ⇒ If reinterpretation involves systematics that are correlated with
        experimental ones, the correlation cannot be included.
    → e.g. theory uncertainties

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-018/
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Toy Model
Check the effect of these limitations on a toy model, loosely modeling the 
couplings H→γγ measurement.
→ 2-bin counting measurement (0-jet/2-jet)
→ measure σggF, σVBF (actually σ × Bγγ)

Parameter values:
• σggF = 102 fb  with 96% / 4% split between 0-jet and 2-jet bins
• σVBF = 8 fb, all in the 2-jet bin
• Acceptance x efficiency: 40% in both bins
• Adjust background levels to match stat uncertainties from H→γγ.
• L = 150 fb-1

• Systematics: Log-normal impact, values:

NP ggF/0-jet
Acceptance

ggF/2-jet
Acceptance 

VBF
Acceptance

Experimental 
syst.,  0-jet

Experimental 
syst.,  2-jet

0-jet 2% - 2% 5% -

2-jet - 15% - - 5%
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(σggF, σVBF) Measurement
SM expected results:

→ Good agreement with H→γγ results 

Compare:
• Profile likelihood scan using the full 

likelihood
• PLR scan using a Gaussian likelihood 

based on HESSE covariance matrix 
at best-fit point.

→ Measurement is not quite Gaussian,
     but not catastrophically so.

Same exercise without systematics: 
 ⇒ Excellent agreement

→ Most non-Gaussianity comes from     
the log-normal uncertainties
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Reinterpretation
Reinterpretation in simple (μggF, μVBF) framework.
→ Include 5% uncertainties on σSM values
→ Correlate σggF,SM uncertainty with ggF/0jet acceptance uncertainty
→ Correlate σVBF,SM uncertainty with VBF acceptance uncertainty

Compare
• Full likelihood
• Gaussian L +  “external” interpretation

systematics (*)
→ No correlation with measurement

→ Larger difference observed than for
    Gaussian approx. in σ measurement

Expected due to 
1. Non-Gaussian effects
2. Uncorrelated syst. add in quadrature,  vs. correlated syst add linearly

LGaus(σggF ,σVBF) → LGauss(μggF σggF,SM(1+δggF)
θggF ,μVBFσVBF,SM log (1+δVBF)

θVBF)G (0 ;θggF ,1)G(0 ;θVBF ,1)(*)

σggF = μggF σ ggF ,SM

σVBF = μVBF σVBF ,SM
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Full vs. Gaussian comparisons

• Difference partially due to non-Gaussianity but larger effect from lack of 
correlation of systematics

• How to properly correlate interpretation syst. in the Gaussian case as well ?

Implement uncorrelated interpretation systematics in full likelihood 
to compare with Gaussian case:
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Correlating NPs: Full Covariance
Option 1: provide the full covariance matrix

Can use it to build a Gaussian version of the likelihood:

LGauss(μ ,θ)= exp (−1
2 [μ−μ̂

θ−θ̂ ]
T

H [μ−μ̂

θ−θ̂ ] )

C = [
Cμ Cμ θ

Cμ θ

T Cθ
]

H = C−1
= [

C stat
−1

Δ

Δ
T H θ

]
μ θ

θ

μ

Stat-only 
covariance 

matrix

Post-fit NP uncertainties 
(should be ~Identity)

Impact
of NPs on 

POIs

μ θ
μ
θ

Profile θ in the Gaussian likelihood: 
Then POIs have Hessian matrix

So profiling LGauss(μ, θ) gives back ) gives back the same 
covariance matrix as profiling the full likelihood

For reinterpretations, can 
reparameterize, extend, … :

Hμ ' = Cstat
−1

−Δ H θ
−1

Δ
T
= Cμ

−1

L(μ ,θ) → LGauss (μ(κi ,θ) ,θ) Lext (κi ,θ)
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Correlating NPs: Decomposed Covariance
Option 2 : Provide covariance matrices for stat-only case, and after freeing 
each relevant NP one by one:

→ Generalizes uncertainty decomposition
→ Provides impact of each NP 

Can reconstruct an approximate form of the full Hessian:

→ Requires to provide separately the signs of the impacts of NPs on POIs 
→ Doesn’t account for correlations between the POIs
→ Formulas above valid at leading order in syst/stat, but can also be
     computed exactly

H = [
C stat

−1
±C stat

−1
√Cθ1

±Cstat
−1

√Cθ2

±C stat
−1

√Cθ1
1+√Cθ1

T C stat
−1

√Cθ1
0

±C stat
−1

√Cθ2
0 1+√Cθ1

T Cstat
−1

√Cθ1

]

C = Cstat + Cθ1
+ Cθ2

+ …

Cθ1
= C stat+θ1

− C stat
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Application to the Toy Example

• Very similar results from both options
• Match the full likelihood results, up to non-Gaussian effects
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Summary
In this example, both options do what was expected:
→ Describe well the Gaussian approximation to the likelihood
→ Allow proper correlations between measurement and interpretation
→ However non-Gaussian behavior is not quite negligible, mainly due to log-
normal implementation of systematics. 

 ⇒ Need to check other cases

Is it something to pursue for couplings results ? Ideas on a preferred option ?

Covariance matrix decomposition
⊕ Generalizes uncertainty decomposition
     →  integrates better in existing results ?
⊕ Smaller matrices nPOIs

2 × ntheory NPs.
⊖ Not quite the full information : missing NP  NP ↔ NP 

correlations
⊖ Needs separate signs matrix : sign of impact 
for each (POI, NP) pair

Full covariance matrix
⊕ Provides all the information in one 
go
⊖ Large matrix : (nPOIs + ntheory NPs)2
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