Presentation of STXS Results for Reinterpretation

Nicolas Berger (LAPP)

Introduction

Higgs couplings measurements can be reinterpreted in specific theory models \Rightarrow Increasingly relevant as measurements become finer-grained and more precise, e.g. EFT reinterpretation of STXS.

Within ATLAS, can be done at the workspace level. For external use, provide

- Central values + uncertainties of POIs
- POI correlation matrix
- \rightarrow Full description of the measurement in the Gaussian approximation.

However:

- \rightarrow Doesn't account for non-Gaussian behavior \Rightarrow See previous presentation
- \rightarrow Effect of NPs already absorbed through profiling, cannot be separated out
 - ⇒ If reinterpretation involves systematics that are correlated with experimental ones, the correlation cannot be included.
 - \rightarrow e.g. theory uncertainties

Toy Model

Check the effect of these limitations on a toy model, loosely modeling the couplings $H \rightarrow \gamma \gamma$ measurement.

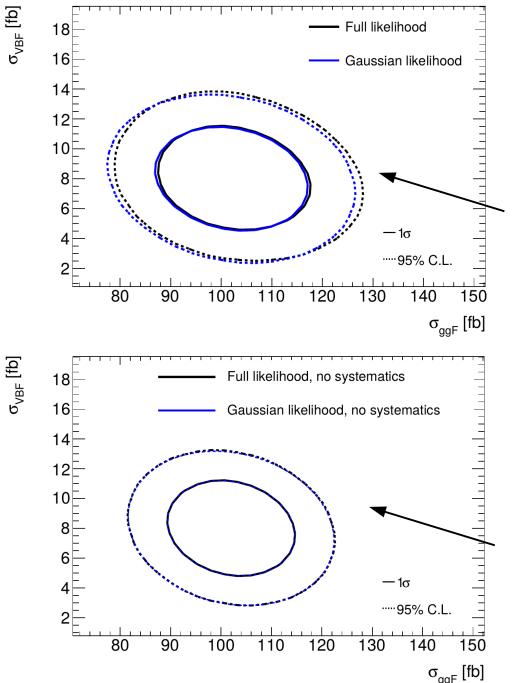
- \rightarrow 2-bin counting measurement (0-jet/2-jet)
- \rightarrow measure σ_{ggF} , σ_{VBF} (actually $\sigma \times B\gamma\gamma$)

Parameter values:

- $\sigma_{qaF} = 102$ fb with 96% / 4% split between 0-jet and 2-jet bins
- $\sigma_{VBF} = 8 \text{ fb}$, all in the 2-jet bin
- Acceptance x efficiency: 40% in both bins
- Adjust background levels to match stat uncertainties from $H \rightarrow \gamma \gamma$.
- $L = 150 \text{ fb}^{-1}$
- **Systematics**: Log-normal impact, values:

NP	ggF/0-jet Acceptance	ggF/2-jet Acceptance	VBF Acceptance	Experimental syst., 0-jet	Experimental syst., 2-jet
0-jet	2%	-	2%	5%	-
2-jet	-	15%	-	-	5%

(σ_{ggF} , σ_{VBF}) Measurement



SM expected results:

$$\begin{split} \sigma_{\rm ggF} &= 102^{+8.2}_{-8.5}({\rm stat})^{-5.7}_{-4.1}({\rm exp})^{-2.3}_{-1.7}({\rm theo})\,{\rm fb}\\ \sigma_{\rm VBF} &= 8.0 \pm 2.1({\rm stat})^{+0.7}_{-0.5}({\rm exp})^{+0.7}_{-0.4}({\rm theo})\,{\rm fb} \end{split}$$

 \rightarrow Good agreement with H $\rightarrow\gamma\gamma$ results

Compare:

- Profile likelihood scan using the full likelihood
- PLR scan using a Gaussian likelihood based on HESSE covariance matrix at best-fit point.
- → Measurement is not quite Gaussian, but not catastrophically so.

Same exercise without systematics:

 \Rightarrow Excellent agreement

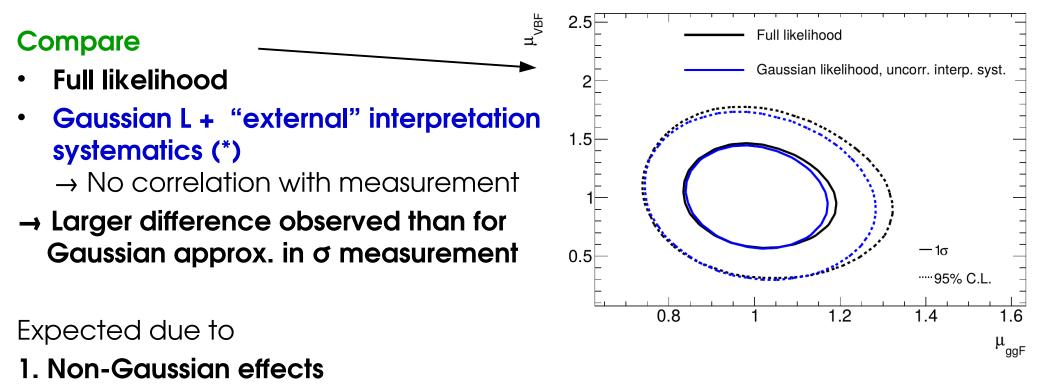
→ Most non-Gaussianity comes from the log-normal uncertainties

Reinterpretation

Reinterpretation in simple (μ_{aaF} , μ_{VBF}) framework.

 $\sigma_{ggF} = \mu_{ggF} \sigma_{ggF,SM}$ $\sigma_{VBF} = \mu_{VBF} \sigma_{VBF,SM}$

- \rightarrow Include 5% uncertainties on $\sigma_{_{SM}}$ values
- \rightarrow Correlate $\sigma_{_{gaF,SM}}$ uncertainty with ggF/0jet acceptance uncertainty
- \rightarrow Correlate $\sigma_{_{\text{VBF,SM}}}$ uncertainty with VBF acceptance uncertainty

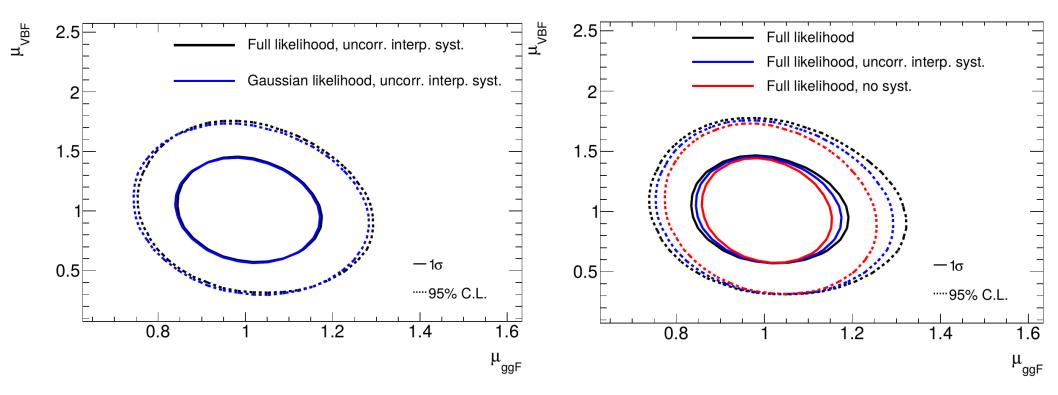


2. Uncorrelated syst. add in quadrature, vs. correlated syst add linearly

 $(\texttt{*}) \ L_{\text{Gaus}}(\sigma_{\text{ggF}}, \sigma_{\text{VBF}}) \rightarrow \ L_{\text{Gauss}}(\mu_{\text{ggF}} \sigma_{\text{ggF,SM}}(1 + \delta_{\text{ggF}})^{\theta_{\text{ggF}}}, \mu_{\text{VBF}} \sigma_{\text{VBF,SM}} \log(1 + \delta_{\text{VBF}})^{\theta_{\text{VBF}}}) G(0; \theta_{\text{ggF}}, 1) G(0; \theta_{\text{VBF}}, 1) G(0; \theta_{\text{$

Full vs. Gaussian comparisons

Implement uncorrelated interpretation systematics **in full likelihood** to compare with Gaussian case:



- Difference partially due to non-Gaussianity but larger effect from lack of correlation of systematics
- How to properly correlate interpretation syst. in the Gaussian case as well?

Correlating NPs: Full Covariance

Option 1: provide the full covariance matrix

 $C = \begin{bmatrix} C_{\mu} & C_{\mu\theta} \\ C_{\mu\theta}^{T} & C_{\theta} \end{bmatrix} \quad \begin{matrix} \mu \\ \mathbf{0} \\ \mathbf{0}$

Stat-only

covariance

matrix

 $H = C^{-1}$

 $L(\mu,$

Can use it to build a Gaussian version of the likelihood:

$$L_{\text{Gauss}}(\mu, \theta) = \exp\left(-\frac{1}{2} \begin{bmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{bmatrix}^T H \begin{bmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{bmatrix}\right)$$

Profile θ in the Gaussian likelihood:

Then POIs have Hessian matrix

 $H_{\mu}' = C_{\text{stat}}^{-1} - \Delta \ H_{\theta}^{-1} \ \Delta^{T} = C_{\mu}^{-1}$

So profiling $L_{Gauss}(\mu, \theta)$ gives back the same covariance matrix as profiling the full likelihood

For reinterpretations, can reparameterize, extend, ... :

$$\begin{array}{l} \text{he} \\ \text{Post-fit NP uncertainties} \\ \text{(should be ~Identity)} \\ \end{array}$$

Impact

of NPs on

POIs

U

Correlating NPs: Decomposed Covariance

Option 2 : Provide covariance matrices for stat-only case, and after freeing each relevant NP one by one:

$$C = C_{\text{stat}} + C_{\theta_1} + C_{\theta_2} + \dots$$

 $\sum C_{\theta_1} = C_{\text{stat}+\theta_1} - C_{\text{stat}}$

 \rightarrow Generalizes uncertainty decomposition

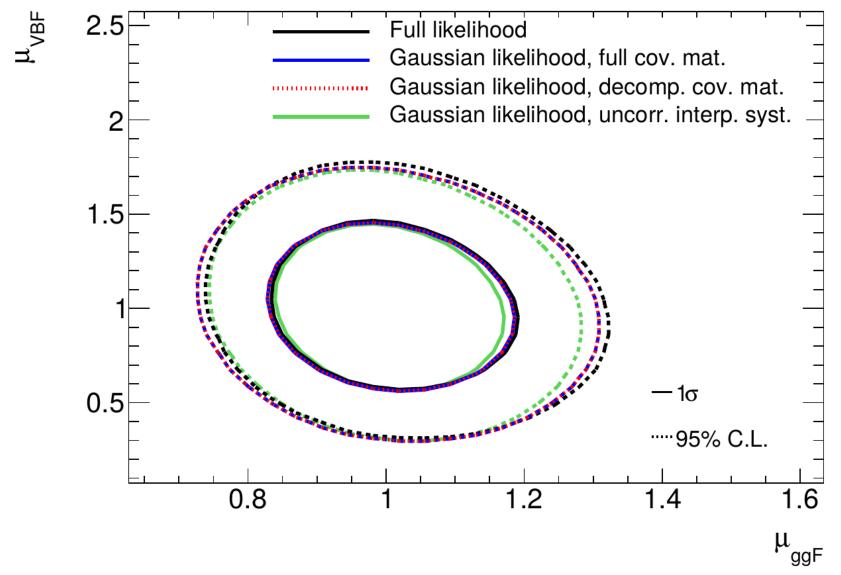
 \rightarrow Provides impact of each NP

Can reconstruct an approximate form of the full Hessian:

$$H = \begin{bmatrix} C_{\text{stat}}^{-1} & \pm C_{\text{stat}}^{-1} \sqrt{C_{\theta_{1}}} & \pm C_{\text{stat}}^{-1} \sqrt{C_{\theta_{2}}} \\ \pm C_{\text{stat}}^{-1} \sqrt{C_{\theta_{1}}} & 1 + \sqrt{C_{\theta_{1}}}^{T} C_{\text{stat}}^{-1} \sqrt{C_{\theta_{1}}} & 0 \\ \pm C_{\text{stat}}^{-1} \sqrt{C_{\theta_{2}}} & 0 & 1 + \sqrt{C_{\theta_{1}}}^{T} C_{\text{stat}}^{-1} \sqrt{C_{\theta_{1}}} \end{bmatrix}$$

- \rightarrow Requires to provide separately the signs of the impacts of NPs on POIs
- → Doesn't account for correlations between the POIs
- → Formulas above valid at leading order in syst/stat, but can also be computed exactly

Application to the Toy Example



- Very similar results from both options
- Match the full likelihood results, up to non-Gaussian effects

Summary

In this example, both options do what was expected:

- \rightarrow Describe well the Gaussian approximation to the likelihood
- → Allow proper correlations between measurement and interpretation
- \rightarrow However non-Gaussian behavior is not quite negligible, mainly due to lognormal implementation of systematics.
- \Rightarrow Need to check other cases

Is it something to pursue for couplings results? Ideas on a preferred option?

Full covariance matrix

Provides all the information in one
go

 Θ Large matrix : $(n_{POls} + n_{theory NPs})^2$

Covariance matrix decomposition

Generalizes uncertainty decomposition

 \rightarrow integrates better in existing results ?

 \odot Smaller matrices $n_{POIs}^{2} \times n_{theory NPs}^{2}$.

 $\ensuremath{\boldsymbol{\Theta}}$ Not quite the full information : missing NP \leftrightarrow NP correlations

• Needs separate signs matrix : sign of impact for each (POI, NP) pair