Update on CSIC activities on LGAD & 3D sensors

- 4th AIDA-2020 Annual meeting
- St. Anne's College, Oxford, UK

E. Currás, J. Duarte, M. Fernández, A. García, G. Gómez, J. González, R. Jaramillo, D. Moya, I. Vila.
Instituto de Física de Cantabria(CSIC-UC)
M. Moll, M. Centis, M. Wiehe*.
CERN, (*)Albert-LudwigsUniversität Freiburg
M. Carulla, A. Doblas, D. Flores, S. Hidalgo, A. Merlos, G. Pellegrini, S. Otero Ugobono, D. Quirion.
IMB-CNM (CSIC)

Iván Vila Álvarez Instituto de Física de Cantabria (CSIC-UC)

Outline - 1/ Thin LGAD run from IMB-CNM

- Radiation tolerance of thin LGADs (AIDA-2020)
 - Motivation & sample description
 - _ Electrical characterization: IV & CV
 - _ Charge collection vs fluence.
 - _ Slewing rate vs fluence.
- On the high-leakage current issue
 - _ Identification of the high-leakage current.
 - _ New manufacturing run with AIDA-2020 layout.

Motivation, Samples & Irradiation points

- Compare the radiation tolerance (protons) of LGAD with two different active thickness: 50 and 35 μm.
- Samples form CNM Run#11748 (AIDA-2020 WP7)

Total area of 2.6x2.6 mm² Active area of 1.3x1.3 mm² Intermediate gain

- Irradiated at CERN PS with 24 GeV protons at 5 different fluences.
 - 6E13 n_{eq}/cm2
 - 1E14 n_{eq}/cm2
 - 3E14 n_{eq}/cm2
 - 1E15 n_{eq}/cm2
 - 3E15 n_{eq}/cm2

Electrical Characterization: IV Curves

i F (A

- Large reverse current (unexpected).
- The reverse current is suppressed by irradiation.
- Originated at the at diode periphery (see next slides).

TCT Characterization: Charge Collection Uniformity

2D amplitude map, mV

- ◆ Top illumination
- Same laser intensity in both cases
- ◆ Temperature: -20 C
- ◆ Amplifier: CIVIDEC C2, 2 GHz, 40 dB
- Oscilloscope: Agilent DSO 9254, 2.5 GHz, 20 GSa/s
- Averaging of 256.

ivan.vila@csic.es, 4th Annual Meeting, Oxford, April 2019

TCT Characterization: Charge vs. Bias Voltage

ivan.vila@csic.es, 4th Annual Meeting, Oxford, April 2019 6

Charge, normalized

First estimation of timing performance: slew rate.

$$\delta_{time} \propto \frac{\delta_{noise}}{\left|\frac{dV}{dt}\right|} \propto \frac{\Delta t}{\Delta V} * \delta_{noise} = \frac{\delta_{noise}}{SR}$$

$$SR = \frac{\Delta V}{\Delta t}$$

Slew rate significantly better for the case of thiner LGADs.

Infrared imaging of single diode LGAD

High leakage current I_{leak}>10⁻⁴A @ V>30V

SC5500 thermal camera G3x Microscopic lens t_i = 356 µs $n_{samples}$ =10000 $f_{lock-in}$ =101 Hz V_{pp} =10V

Leakage current origin: hot spot imaging

Location of hot spots @V = 20V

Location of hot spots @V = 150V

High-leakage current origin: TCAD simulations

Origin of he high reverse current: new LGAD run

Run 12488. LGAD 4 AIDA2020. 2nd Run

New run with corrected periphery design

- 4" 50+300 μm thick Si-Si wafers
- 4 wafers (lack of wafers is starting to be important !)
- N⁺-Layer overhang Multiplication Layer until the JTE end (old design)
- ✓ We will use one implantation dose and energy value for the multiplication area (Low Dose – Low Energy)
- We will not use temporary metal (to be faster but the option is possible).
- Run On-going (44/83 process steps)
- The run will end in April 2019

Outline - 2 / AIDA-2020 3D run from IMB-CNM

AIDA-2020 3D sensors from IMB-CNM.

- _ Technology recall
- _ Devices description.
- _ QA with temporary metal: manufacturing yield
- Initial results from characterization of FBK 3D pixel sensors connected to Roc4Sens ROC^(*).
 - Module assembly & radioactive source testing.

(*) See Marco Meschini's talk results on FBK 3D pixel characterization with RD53A ROC.

AIDA - 2020 production (run #11119): Technology

- Run completed in February 2019, seven wafers + one additional wafer for process control.
- Si-on-Si 4" wafers (150 μm + 200 μm)
- Single-sided 3D sensors pixels with RD53A layout.
- Etched columns: 8 um diameter, 120 um length.
- Different pixel cell form-factors and number of electrodes (see next slide)

AIDA-2020 production (run #11119): Devices

	7-17-2	: 3-1:	8-1 8-2	
	2:1:	: 2-2:	:2-3:	
5 <u>5</u> 5 <u>4</u> 8-3	<u>1</u><u>1</u><u>1</u>	· <u>1</u> - 2	· <u>1</u> -3	8-5 -
7-3 8-4	<u>1</u> -4	· 1-5		8-6 7-5
7-4 5-1	1 - 7	s 1° - 8° s		5-5 7-6
5-2 5-2	2:4:	:2-5:	2-6	5-6 ⁶⁻¹
	2-7	2-8	2-9	
	<u>5-35-4</u>	:3-2:	5-7 <u>5-8</u> 🔛	

- RD53A sensors
- 1-x 50x50 um²
- 2-x 25x100um² 2E
- 3-x 25x100um² 1E

	(a) (a)
50)x50 µm ²

(nine units)

(nine units)

(two units)

25x100 µm² 2E

- Diodes
- 5-x 50x50um² 100x100 electrodes
- 6-x 50x50um² 50x50 electrodes
- 7-x 25x50um² 50x50 electrodes
- 8-x 25x100um² 50x50 electrodes
- 64 test structures 3x3 matrix
- MOS
- 9-x 3500x3500 um2
- Polysilicon test structures
 - I. Vila IT Sensor Meeting, February 7th 2019 ¹⁶

QA using temporary metal: Diode CV characteristics

- _ In CV graphs two slopes: the first for the lateral depletion between columns and the second for full depletion.
- _ Very low capacitance for 25x100 (1E) geometry (below 20fF)
- The leakage current per pixel below 25pA/pixel for 50x50 μm^2 and 25x100 μm^2 (1E) geometries at 80 Volts (x10 for the 2E geometry)

Yield summary

- Pixel cell 50x50: 79% (50/63)
- Pixel cell 25x110(1E): 50% (7/
- Pixel cell 25x110(2E):

50%(7/14)6%(4/63)

I. Vila - IT Sensor Meeting, February 7th 2019 18

Characterization of 3D FBK pixels connected to R4S

Sensors from AIDA-2020 FBK 3D run, carrier boards from PSI, flip-chipped at IZM, wire bonded at AWGE.

Characterization of 3D FBK pixels connected to R4S(2) F PH vs Vcal pix 77 88 cluster map clmap physcal 49148 PH-ped [ADC] 83 Entries 56.83 600 817.1 Mean 83.03 Mean y Mean y 338.1 33.84 Std Dev : 696.7 Std Dev 29.66 120 500 Std Dev y 232.5 100 400 80 300 200 100

col

Summary and Outlook

i F (A

- On CNM thin LGAD radiation-tolerance:
 - Significantly better behavior of 35mm thick LGAD compared with 50 mm thick LGAD (gain and leading slew-rate wise)
 - _ Timing resolution assessment still in progress.
 - _ High reverse current origin identified (new engineering run).
- On CNM 3D sensors:
 - _ First IMB-CNM 3D sensors with almost final HL-LHC technology
 - _ Excellent yield for 50x50 pixel cell form factor.
 - _ Good yield on 25x100 (1E) pixel cell form factor (low statistics).
 - _ Bad yield for 25x110(2E) pixel cell form factor.
 - _ Three wafers to be send asap to IZM for flip-chipping to RD53A ASIC.
- Dedicated study on FBK 3D sensors using R4S chip (high-resolution charge characterization without threshold).

THANK YOU FOR YOUR ATTENTION

BACK - UP

Electrical characterization: CV curves

BEFORE IRRADIATION

AFTER IRRADIATION

CV characteristics does not follow simple acceptor removal model after irradiation (to be discussed)

TCT Characterization: Charge vs. Bias Voltage (2)

- Positive shift of charge collection on-set observed previously in 300mm thick pad diodes with low reverse currents (few hundrend of nA on irrad).
- Caused by the Bulk Space Charge Inversion (BSCI) (trapped carriers)
- Double peaked E-field (velocity) with TPA-TCT and E-TCT profiles demostrated BSCI.

Does the BSCI induce the shift on the gain on-set?

CV characteristic (revisited) - I

- Due to the BSCI of the p bulk, the LGAD becomes effectively a Shockley four-layer diode (aka Thyristor with floating gate).
- Can we explain the CV characteristic based on a Shockley four-layer diode?

CV characteristic (revisited) - II

- The multijunction total capacitance is small than the smallest single junction capacitance.
- No biased:
 - _ J1 & J3 built-in field with same direction, J2 oposite
- Under bias(VR):
 - _ J1 & J3 reverse biased but J2 is forward biased.
 - _ J2 capacitance increases with VR while J1 & J3 decrease with VR.
 - _ Eventually J2 is not longer the smallest capacitance, J1 dominates (back side depletion and then J3 depletion)

CV (50 um), T: -20C, F: 10kHz, irradiated

ivan.vila@csic.es, 4th Annual Meeting, Oxford, April 2019 27

QA using temporary metal: IV RD53A 50 x 50

Wafer_5_RD53A_50x50µm²

I. Vila - IT Sensor Meeting, February 7th 2019 28

QA using temporary metal: IV RD53A 25x100 (1E)

Wafer 6 RD53A 25x100µm² 1E 10-3 10-4 Current [A] 10-7 3-1 25x100µm²(1E) 10-8 40 50 60 Reverse Bias[V] 0 10 20 30 70 80 90 100 Wafer 8 RD53A 10⁻³ 10-4 ⁵01 Crurent [A] 10-7 3-1 25x100µm²(1E) 3-2 25x100µm²(1E) 10-8 0 10 20 30 40 50 60 70 80 90 100 Deveres Disel/

QA using temporary metal: IV RD53A 25x100 (2E)

Water 2 RD53A 25x100µm² 2E

