


# DD4hep Status

## HEP detector description supporting the full experiment life cycle

M.Frank, F.Gaede, M.Petric, A.Sailer

AIDA<sup>2020</sup> Annual Meeting 2019, Oxford

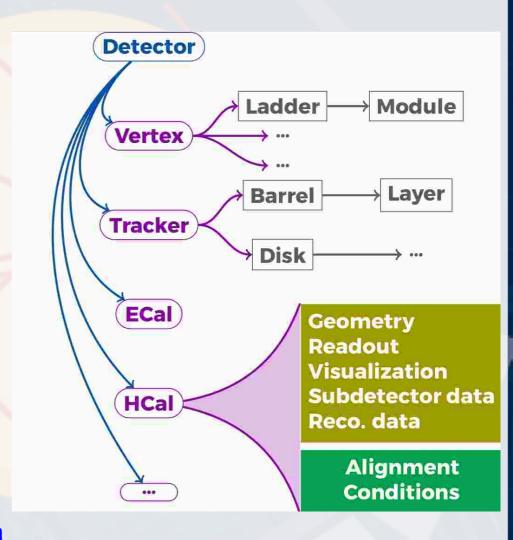
Markus Frank / CERN

- Motivation and Goals
- New Developments
- Conditions and Alignment support
- Miscellaneous
- Summary

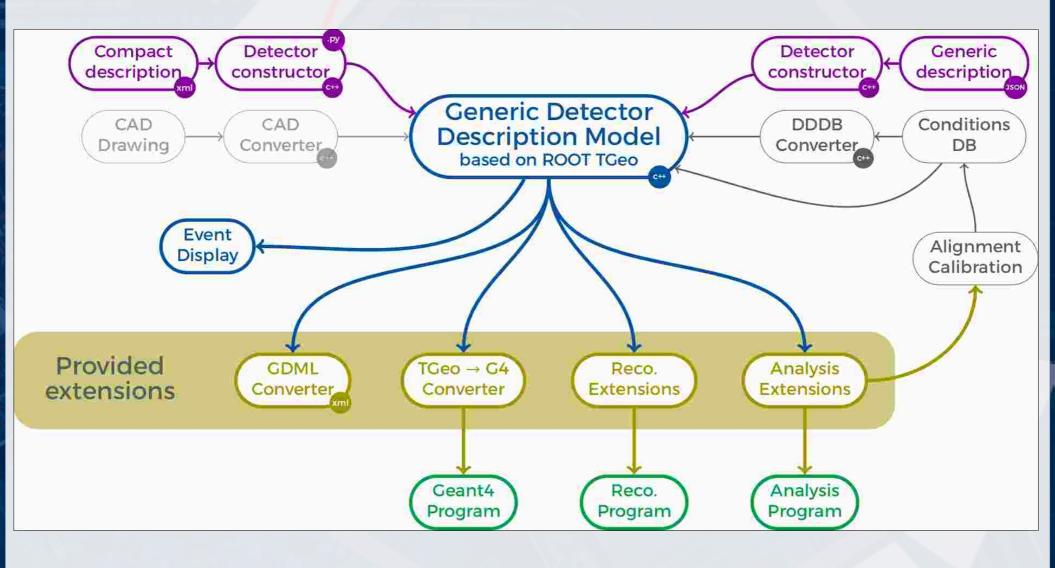


### **Motivation and Goal**

- Develop a detector description
  - For the full experiment life cycle
    - detector concept development, optimization
    - detector construction and operation
    - "Anticipate the unforeseen"
  - Consistent description, with single source, which supports
    - simulation, reconstruction, analysis
  - Full description, including


April 4<sup>th.</sup>, 2019

Geometry, readout, alignment, calibration etc.




### What is Detector Description ?

- Tree-like hierarchy of "detector elements"
  - Macroscopic (ie. not a strip)
  - Subdetectors or parts of subdetectors
- Detector Element
  - Geometry
  - Facilitate access to data necessary to process events
    - Environmental data
    - Alignments
    - Derivatives of these
  - Optionally experiment, subdetector or activity specific data



### **DD4Hep - The Big Picture**





- Motivation and Goals
- New Developments
- Conditions and Alignment support
- Miscellaneous
- Summary



### **NEW: Support for Optical Surfaces**

- Requests from LHCb, FCC and SCTF
  - Placeholder concept developed by TGeo
  - Integration and validation in DD4hep ongoing
- Changes to
  - Surface objects => newly created in D4hep
  - Materials => added material properties
  - DDG4 => propagate surfaces and material properties to Geant4
- Iterative development collaboration between DD4hep and ROOT TGeo
- Ongoing development

- Motivation and Goals
- New Developments
- Conditions and Alignment support
- Miscellaneous
- Summary

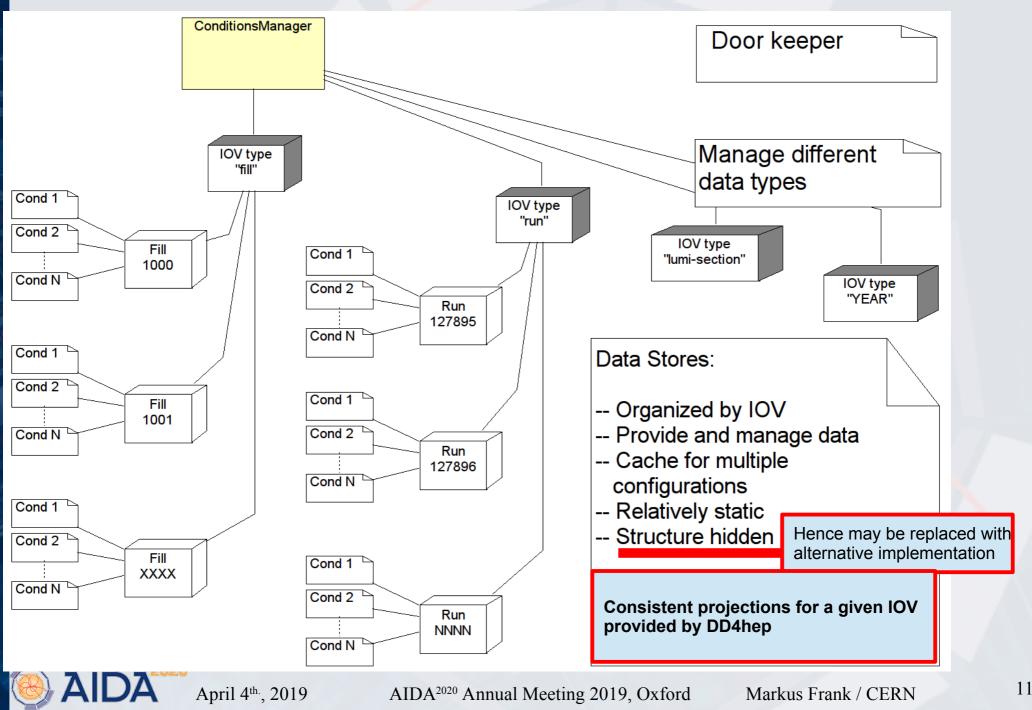
AIDA

### **DDCond: Conditions Data**

- Time dependent data necessary to process the detector response [of particle collisions]
- Provide access to a consistent set of values according to a given time
  - Data typically stored in a database
- Support multi-threading at it's best

- Fully transparent processing, minimal barriers
- Rely on some support from the experiment framework
- Derived conditions as a result of computation(s)
  - Other conditions data applied to a functional object

### **Basic Assumptions (Restrictions)**


(when used by reasonable users)

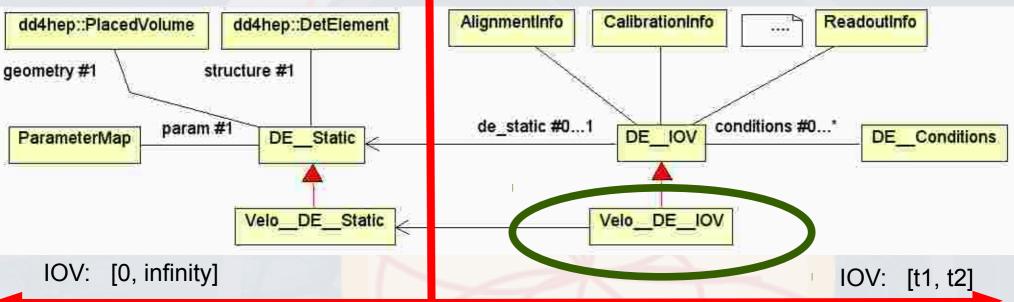
- Conditions change slowly and in batches
  - e.g. every run O(1h), lumi section O(30 sec), etc.
  - Interval of validity is same for a group (needs discipline)
- Since conditions in existing pools still can be shared while preparing new IOV depending conditions
  - No locking strategy necessary

- Users use a coherent 'conditions slice' valid for a defined time interval (intersection)
  - Once created it is read-only: no locking necessary



### **DDCond: The Data Cache**




### **Real World Case: LHCb Velo Detector**

- The work of the last year
- Separation between quasi-static and time dependent conditions is idealistic
  - In the real world a detector element used in reconstruction, HLT, etc has a lot of information
  - Static stuff (partially deduced from geometry etc)
  - IOV dependent stuff (possibly several IOVs) conditions, alignments, measurements, etc.
- Consequently aggregate by reference the required 'simple' conditions data to the desired object
- Create facade over this new 'dd4hep handle' to provide the desired functionality



### **Real World Case: LHCb Velo Detector**

### Chosen solution:



- IOV dependent projection is our new "detector element"
  - Facade provides functionality
- Backwards and forward compatible
  - Any number of facades possible on the same data

### **Real World Case: LHCb Velo Detector**

- Achieved a nearly 100 % backwards compatibility
- Support multi-threaded event processing without locking
  - Conditions are no longer updated
- Clarification:

In GAUDI these detector elements and other conditions are accessed using 'data handles'. This is the only connection to the Framework Extension WP



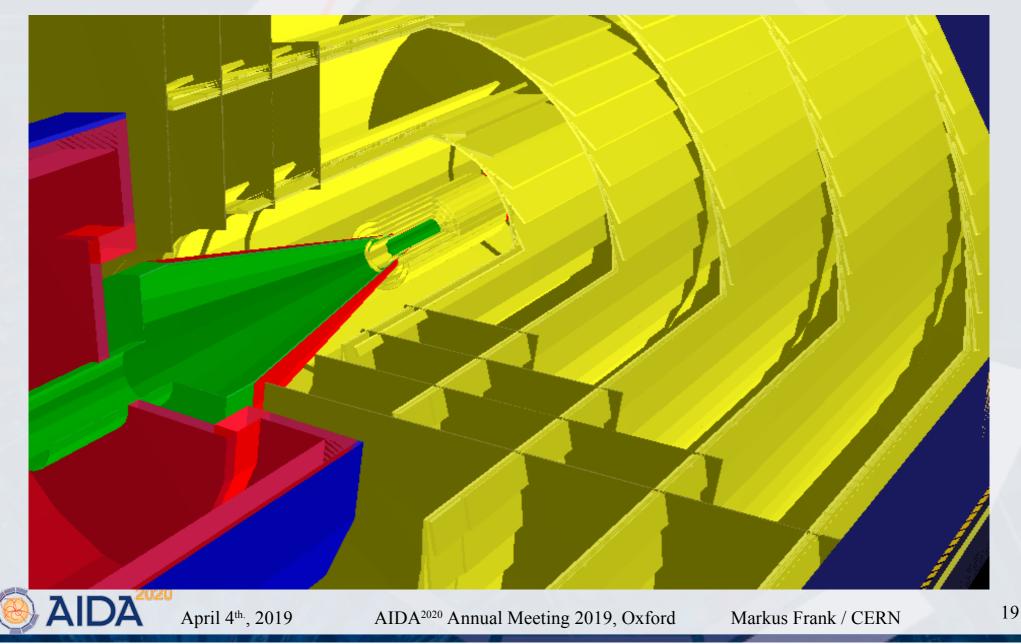
- Motivation and Goals
- New Developments
- Conditions and Alignment support
- Miscellaneous
- Summary



### **Toolkit Users**

#### **Increasing interest in the HEP community**

- ILC F. Gaede et al.
- CLICdp A. Sailer et al.
- SiD D. Protopopescu et al.
- FCC-eh P. Kostka et al.
- FCC-hh A. Salzburger et al.
- FCC-ee O. Viazlo (CLD design), N. Alipour, G. Voutsinas
- SCTF Super-Tau-Charm Factory designs (Novosibirsk, Bejing)
- EIC Evaluation considered/started (W. Armstrong et al.)
- LHCb Upgrade for Run III (B.Couturier et al.)
- CMS Evaluation for upgrade started (202x) (Y.Osborne et al.)
- CALICE Calorimeter R&D, started

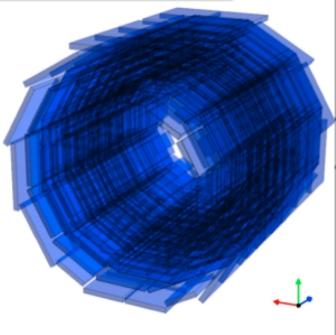

- Motivation and Goals
- New Developments
- Conditions and Alignment support
- Miscellaneous
- Summary



### Summary

- The DD4hep core was further consolidated and enhanced
  - Deployed by various customers
  - Support for optical surfaces ongoing
- High level conditions usage level was developed within the LHCb upgrade project
- CMS so far saw no show-stopper to use DD4hep for the upgrade
- New users were welcomed: SCTF groups from Novosibirsk and Bejing

### **Questions and Answers**




### **CMS** Transition

Courtesy: lanna Osborne / CMS

### Full DT Geometry: DD4hep Source

The source for both <u>Sim</u> and <u>Reco</u> geometry



| Name                                  | Color | Opcty | <b>RnrSelf</b> | RnrChildren | Material                        |
|---------------------------------------|-------|-------|----------------|-------------|---------------------------------|
| ▼muonBase:MB_1 [33]                   |       | 50    | -              | On          | materials:M_8_Air               |
| muonBase.MBWheel_2N_1 [302]           |       | 50    |                | On          | materials:M_8_Air               |
| International MecablesBox_int_1 [1]   |       | 50    | -              |             | materials:M_8_Air               |
| mbCommon:MBCablesBox_Int_2 [1]        |       | 50    | -              | -           | materials:M_B_Air               |
| mbCommon:MBCablesBox_Int_3 [7]        |       | 50    | -              |             | materials:M_8_Air               |
| mbCommon:MBCablesBox_int_4 [1]        |       | 50    | -              |             | materials:M_B_Air               |
| hbCommon:MBCablesBox_int_5 [1]        |       | 50    | -              |             | materials:M_B_Air               |
| mbCommon MBCablesBox_Int_6 [7]        |       | 50    |                |             | materials:M_8_Air               |
| mbCommon:MBCablesBox_int_7 [1]        |       | 50    |                |             | materials:M_B_Air               |
| International MBCablesBox_Int_8 [1]   |       | 50    | -              |             | materials:M_0_Air               |
| mbCommon:MBCablesBox_Int_9 [7]        |       | 50    |                |             | materials:M_8_Air               |
| mbCommon MBCablesBox_Int_10 [1]       |       | 50    |                |             | materials M_8_Air               |
| IndCommon:MBCablesBox_Int_11 [1]      |       | 50    | -              |             | materials:M_0_Air               |
| mbCommon:MBCablesBox_Int_12 [1]       |       | 50    |                | 4           | materials:M_8_Air               |
| ▼mb1.MB1N_1 (6)                       |       | 50    | On .           | On          | materials M_8_Air               |
| ▼mb1:M91SuperLeverPhi_1 [23]          |       | 50    | On             | On          | materials:Air                   |
| mb1 MB15LPN/A/PlateOuter_1 [0]        |       | 50    | On .           | 0e          | materials: Aluminium            |
| mb1 MB15LPNA/PlateOuter_2 [0]         |       | 50    | On .           | 0e          | materials Aluminium             |
| mb/1 MB15LPhiAPiateInner_1 [0]        |       | 50    | On .           | On          | materials: Aluminium            |
| mb1 MB15LPhiAPtatelnner_2 [0]         |       | 50    | On .           | On          | materials: Aluminium            |
| mb1 MB15LPhiAPlateInner_3 [0]         |       | 50    | On .           | 0n          | materials: Aluminium            |
| # mb1 MB15LPhiLayer_49Celts_1 [51]    |       | 50    | On .           | On          | materials: Aluminium            |
| mb1:MB1SLPtvElectronics_49Cells_1 [0] |       | 50    | On             | On          | materials:M_Electronics         |
| m81.MB1SLPtvElectronics_49Cells_2 [0] |       | 50    | On .           | Ön          | materials M_Electronics         |
| mbCommon MBSLPh/Gas_1 (0)             |       | 50    | On             | On          | materials.M_DTBX Gas            |
| ebConnon.MBSLPh/Gai_2 (0)             |       | 50    | On             | On          | materials:M_DTBX Gas            |
| mbCommon MBSLPhiGas_3 (0)             |       | 50    | On .           | 0n          | materials:M_DTBX Gas            |
| mbCommon MBSLPh/Gas_4 (0)             |       | 50    | On             | On          | materials.M_DTBX Gas            |
| mbCommon:MBSLPhiGas_5 [0]             |       | 50    | On             | On          | materials:M_DTBX Gas            |
| mbCommon:MBSLPhiGas_6 [0]             |       | 50    | On .           | On          | materials:M_DTBX Gas            |
| mbCommon MBSLPhiGas_7 (0)             |       | 50    | On             | On          | materials.M_DTBX Gas            |
| mbCommon:MBSLPtr/Gasi_8 [0]           |       | 50    | On             | On          | materials:M_DTBX Gas            |
| mbCommon:MBSLPhiGas_9 (0)             |       | 50    | <u>On</u>      | Ón          | materials:M_DTBX Gas            |
| mbCommon MBSLPhiGas_10 [0]            |       | 50    | On             | On          | materials.M_DTBX Gas            |
| mbCommon:MBSLPh/Gail_11 [0]           |       | 50    | On             | On          | materials:M_DTBX Gas            |
| mbCommon:MBSLPhiGas_12 [0]            |       | 50    | On             | On          | materials:M_DTBX Gas            |
| mbCommon:MBSLPhiGas_13 (0)            |       | 50    | On             | On          | materials:M_DTBX Gas            |
|                                       |       |       |                |             | · · · · · · · · · · · · · · · · |

Simulation Meeting, CMS Week February, 5th, 2019

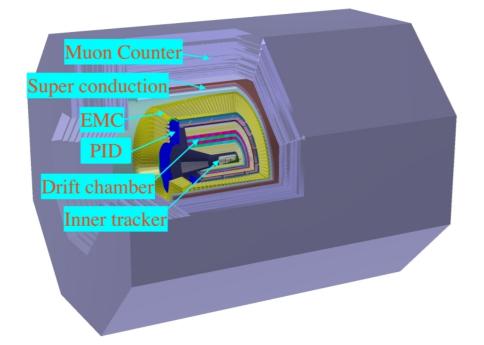
Ianna Osborne, FNAL

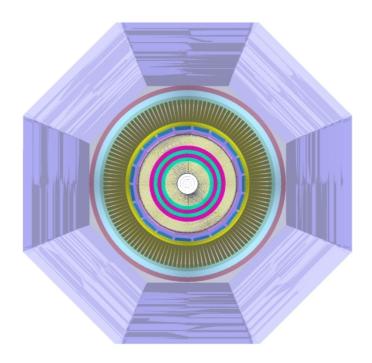
3



#### AIDA<sup>2020</sup> Annual Meeting 2019, Oxford

Markus Frank / CERN


### **SCTF - Bejing**


Xiaorong Zhou State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

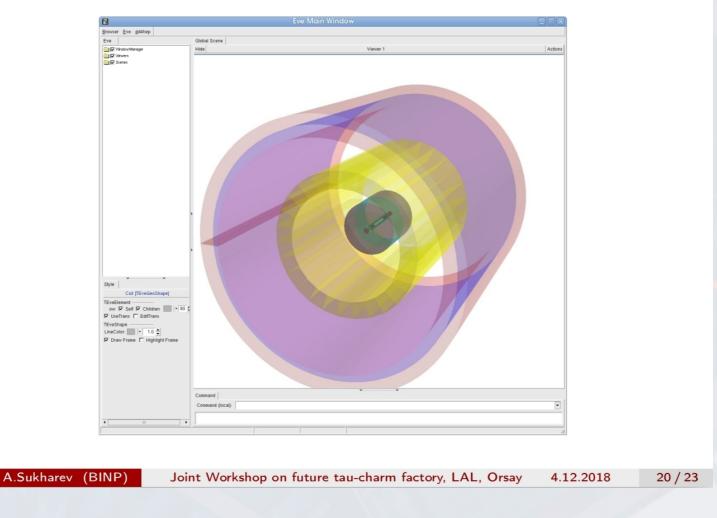
Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

### **Progress on detector simulation**

- STCF software team has been formed.
- OSCAR: Offline Software of Super Tau-Charm Facility.
- Detector geometry with DD4hep.



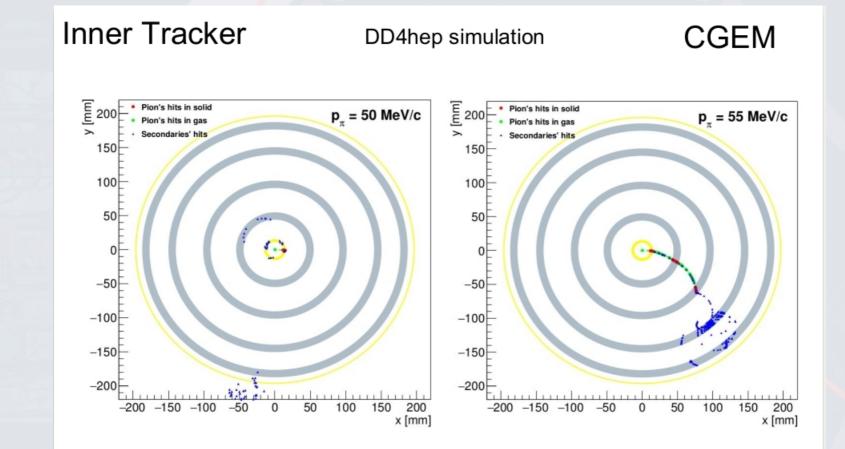



### **SCTF - Novosibirsk**

A.Sukharev Budker Institute of Nuclear Physics (BINP)

Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris

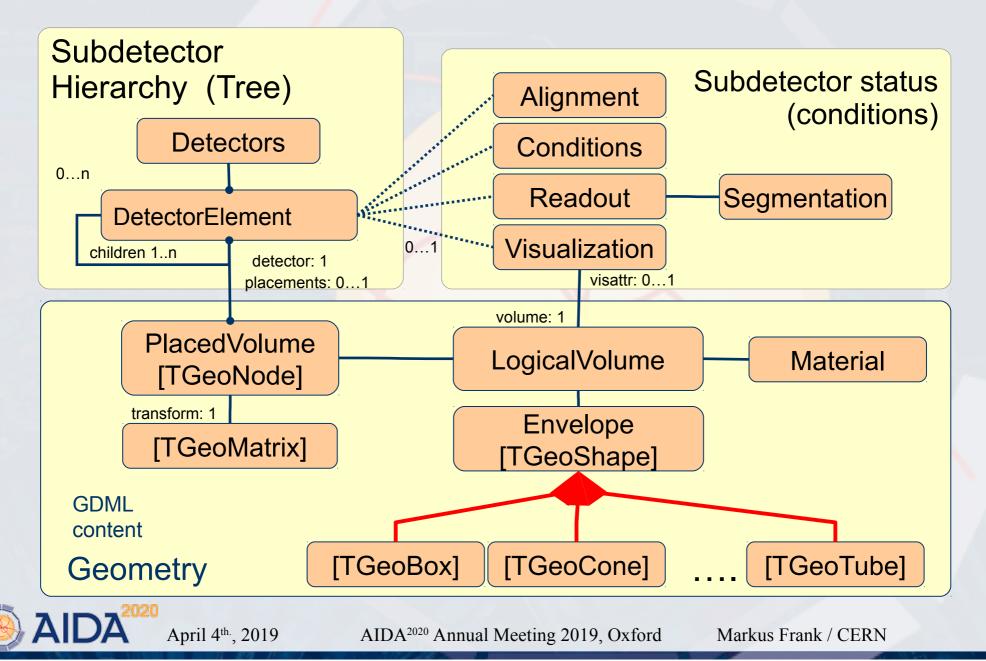
### Status of the software


Detector/Event Display



### **SCTF - Novosibirsk**

L. Shekhtman, A. Sokolov, Vijayanand KV, T. Maltsev Budker Institute of Nuclear Physics (BINP)


Joint Workshop on Future Tau-Charm Factory 2018.12.4-2018.12-7, Paris



- Pions with momenta less than 50 MeV/c do not pass through the beampipe
- Starting from  $p_{\pi}$  = 55 MeV/c two layers can be reached by pions

12

### **Implementation: Geometry**

