

AIDA-2020 4th annual meeting Oxford

Task 2.5 Pre-industrialisation of large area silicon detectors

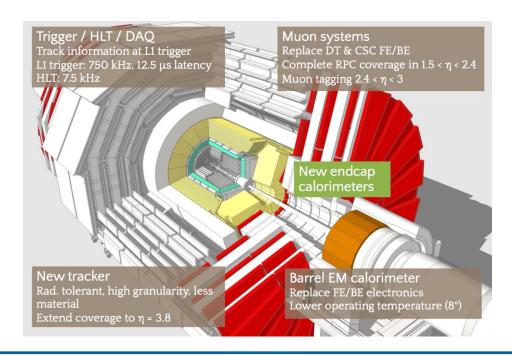
T. Bergauer

4 April 2019

Content

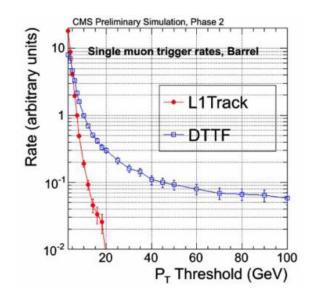
- CMS Phase-II Upgrades
 - Tracker
 - HGCal
- Detector Development with Infineon
- From Market Survey to Invitation to Tender

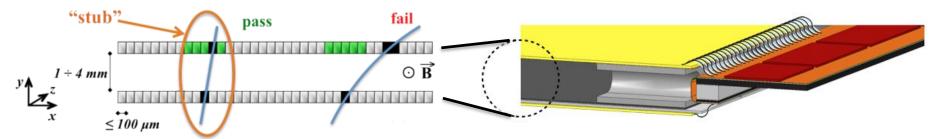
CMS Phase-II Upgrade

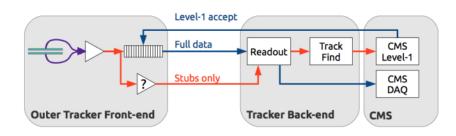

CMS Phase-II Upgrade

AUSTRIAN ACADEMY OF SCIENCES

- CMS Phase 2 upgrade during LS-3 (around 2024-2026) for HL-LHC Phase
 - 5-7 times higher instantaneous luminosity
 - 10x integrated luminosity (3000 fb⁻¹)
- A major challenge for detector design
 - New tracker, trigger, muon and calorimeters



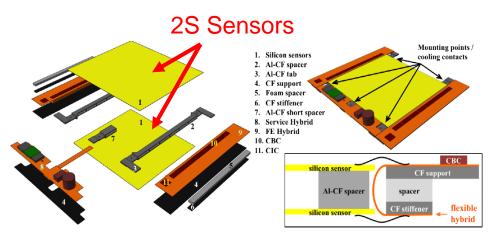

CMS Tracker


AUSTRIAN ACADEMY OF SCIENCES

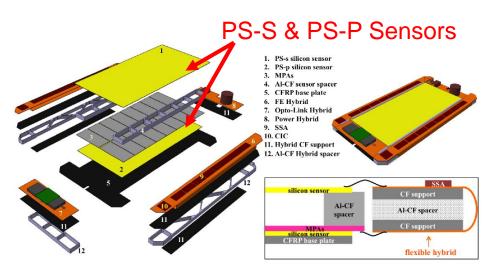
- Muon and calorimeter-based triggers will not be able to stand the rates due to PU and limited resolution
- Muons: no p_T threshold can limit the rate
 - due to strong magnetic field in the tracker high-p_T tracks can be discriminated

 Stubs will be processed in the back end to build L1A

CMS Tracker


AUSTRIAN ACADEMY OF SCIENCES

2S modules:

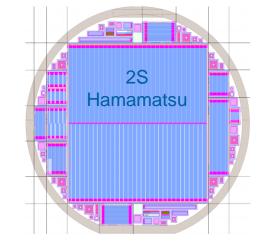

- Outer part of tracker
- Two stacked strip sensors with parallel strip orientation
- Sensor sizes 10x10 cm
- Strips wire-bonded to hybrid containing CBC chips

PS modules:

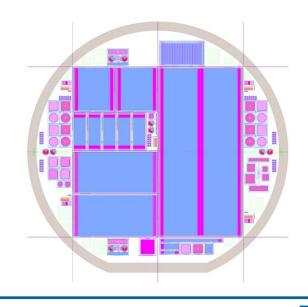
- Inner part of tracker close to pixels
- Consists of one strip sensor and one macro pixel sensor stacked
- Sensor sizes 10x5 cm

2S module schematics

PS module schematics

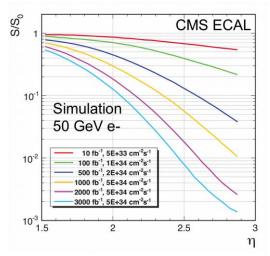


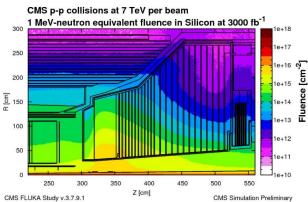
CMS Tracker

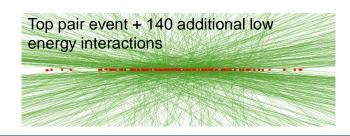


- Feasibility of a production on 8" wafers was investigated
 - Cost advantages were expected as wafer area increases more than costs
 - Infineon produced full scale 2S long prototype sensors produced on 8" wafers in a cooperation with HEPHY
 - →World's first silicon strip sensors produced on 8" wafers

- Baseline of CMS: production on 6" wafers
- prototype wafers from two possible vendors already available
 - full scale 2S prototypes (HPK)
 - Full scale PS-S prototypes (IFX)

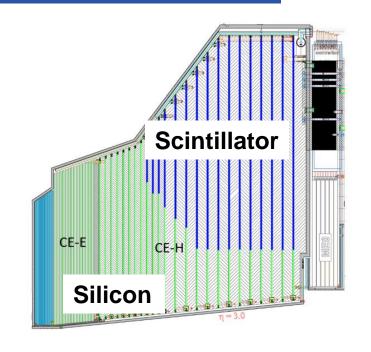



Current CMS Calorimeters:


- Designed for integrated luminosity of maximal 500 fb⁻¹
- Electromagnetic: PbWO₄ crystals
- Hadronic: plastic scintillators

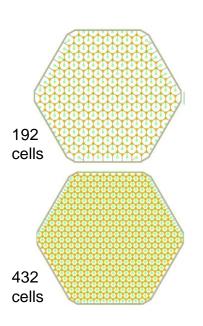
Environment of CMS Endcap at HL-LHC:

- Fluences of up to 10¹⁶ n_{eq}/cm²
- doses of up to 1.5 MGy
- Pile-up of up to 200 collisions/crossing
- → Only silicon detectors are
 - radiation tolerant enough
 - Fast enough to mitigate pile-ups
 - Fine segmented to allow high granularity
 - affordable



	CE-E	CE-H (Si)	CE-H (Si + Scint)		
Active	Silicon	Scintillators			
Absorber	Lead	Stainless steel			
Depth	26X ₀ / 1.7λ	9λ			
Layers	28	8	16		
Weight	23t	205t			

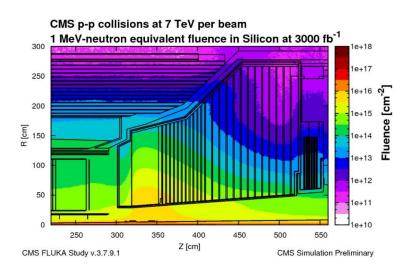
	Silicon sensors	Scintillators	
Area	600 m ²	500 m ²	
# Modules	25,000	2500	
Channels Size	0.5-1 cm ²	4-30 cm ²	
# Channels	6 Mio	400k	
Op. temperature	-30° C	-30° C	

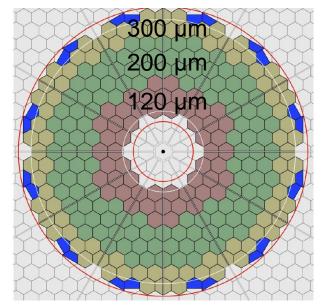


Silicon Sensor Geometry

- Hexagonal sensor geometry as largest tile-able polygon
 - maximize use of circular wafer
 - Minimize ratio of periphery to surface area
 - Truncated tips ("mouse-bites") used for module mounting →
 Further increase use of wafer surface
- Each sensor consists of 192/432 individual diodes (called "cells" or "pads")

Thickness [µm]	# cells	Cell size [cm²]	Cell C [pF]	Bulk polarity	Expected Fluence [E15 n cm ⁻²]	# wafers (8 inch)	# partial 8 inch wafers
300	192	1.18	45	р	0.1-0.5	13164	1284
200	192	1.18	65	р	0.5-2.5	8712	144
120	432	0.52	50	р	2-7	3000	324
					Total:	24876	1752



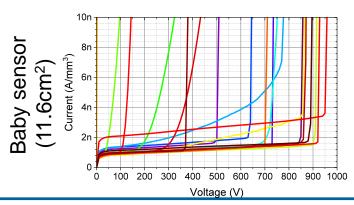


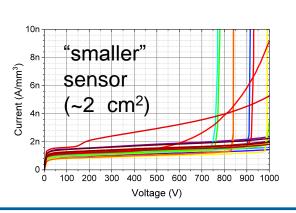
AUSTRIAN ACADEMY OF SCIENCES

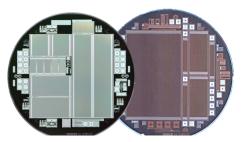
Radiation Levels

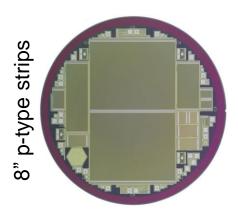
- Fluence is n-dominated w.r.t. charged hadrons (90%/10%)
- Deployment of thinner sensors in the higher fluence regions of the calorimeter
 - improved charge collection
 - reduced leakage current
- Typical signals in calorimeter much higher than MIPs
 - MIP sensitivity needed for energy calibration (e.g. isolated muons)

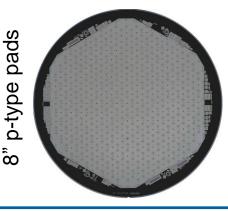
Detector Development with Infineon






History of the Project


- We were collaborating with them since a couple of years to develop Si sensors for HEP
 - 2012-2014: production of 6" p-on-n sensors
 - 2015-2017: production of first Si strip sensors on 8-inch FZ p-type wafers
 - 2016/17 onwards: production of Si pad sensors for HGCal
- Quality constantly improving
 - One remaining problem: premature IV breakdowns, scaling with sensor size
 - Addressed by different mitigation measures



6" strips

- Meanwhile, Infineon became an even larger player in the semiconductor business
 - Acquired US competitor in 2015 for 3 Billion \$
 - Investment of 1.6 Billion € to expand research & production site in Villach (Austria) with automated 12-inch wafer fab

Infineon Villach (Austria) with planned new 12-fab (green)

- Specialization of Infineon in power devices, automotive, chip cards
 - all impressing growing markets: electric cars, LED lights, smartphones ensure full order books
 - Stocks development +1100% in last 10 years (compare to +49.2% Global Index)

 Infineon re-calculated the business case for the production of HEP sensors taking these developments into account

- Since they treat our project as "one-time order" all development costs needs to be taken into account for calculating the revenue
 - Development costs increased significantly last year to address the IV breakdown problems
 - The costs of the sensors increased by an factor of 4 w.r.t original CMS planning

Infineon decided to quit the development program of HEP sensors for economic reasons in summer 2018

- Unfortunate decision after 9 years of fruitful collaboration
 - understandable economic reasons for Infineon
- Nevertheless the project has to be treated as success
 - Project was very visible within local funding agencies and academic environment
 - Very educative collaboration
 - We learned a lot about commercial production of silicon devices
 - Infineon gained insights in HEP community, device irradiations and received highly trained manpower

Consequences on Infineon's decision

- HPK is the only qualified vendor of sensors for CMS Tracker, CMS HGCal and ATLAS ITk
 - More than 46.000 x 6" and 30.000 x 8" wafers over ~3 years
- To ensure that HPK can prepare for this large production:
 - A committee was formed with participation from all projects and CERN procurement
 - HPK was informed of the situation
 - A high-level management meeting at Hamamatsu was held (including CERN DR and ATLAS/CMS SPs)
 - A timeline was defined for the Invitation to Tender which will lead to the contracts for the series production

From Market Survey to Invitation to Tender

Market Survey to Tender

Common CMS/ATLAS Market survey for Tracker Sensors

Enabling factors:

- Strip sensors for ATLAS and CMS are very similar
- Different specifications are not so significant for the production

Advantages:

- Shows the combined demand of the largest projects of the coming years to interested companies
- We can share qualification work among the two collaborations
- BUT: A very large fraction of sensor production is not reflected in this MS: CMS High Granularity Calorimeter (HGCal)
 - HGCal is also participating in the results of the first step(s) of this MS

Market Survey to Tender

CMS/ATLAS Market Survey Procedure

Each interested company has to successfully pass a three step qualification procedure to be eligible to receive the Invitation to Tender!

- Step 1: Companies need to return the "Technical Questionnaire" document where the responses need to fulfil the requirements set in the "Qualification Criteria" document → ADIA-2020 Milestone MS30 (2016)
- Step 2: Companies need to provide samples free of charge of functional devices of e.g. previous project → 2nd annual meeting (2017)
 - ATLAS and CMS qualified samples produced by Infineon as 8" proof-of-principle
- Step 3: CMS/ATLAS orders (and remunerates) a batch of prototype sensors according to CMS layout and specs → 2018
 - ATLAS and CMS ordered close-to-final prototypes as described in the TDRs
- Step 4: Invitation to Tender for procurement of series production → 2019

Market Survey to Tender

- ATLAS and CMS worked hard last weeks to define the technical specifications of the sensors they need for the series production
 - Underwent different review processes (similar to Production readiness review)
 - All information were collected in three different documents (ATLAS Itk, CMS OT, CMS HGCal)
 - Sensor procurement committee met regularly to homogenize common items (wording, definitions,...)
- Invitation to Tender sent to all companies qualified through all steps of Market Survey by CERN procurement service yesterday
 - Companies have one month to respond and fill tables with costs/options

Summary

- Phase-II Upgrades will need more than 46.000 x 6-inch and 30.000 x 8-inch wafers for strip and pad detectors
- ATLAS/CMS Market Survey was started in 2016 to identify interested companies
- European vendor Infineon was interested
 - Prototype sensors for CMS tracker, HGCal and ATLAS Itk produced through year-long collaboration
 - Infineon stopped that project in summer 2018 because of economic reasons
- Market Survey closed with only one qualified company
 - Experiments defined technical specifications for procurement
 - Invitation to Tender sent out yesterday
 - HPK has time to answer until 24 April