Status of the AlCap experiment

NUFACT2019, Daegu, S. Korea Mark Wong on behalf of the AlCap collaboration 2019/08/30

Contents

Previous talks:

NUFACT2014 arXiv:1501.04880 CIPANP2018 arXiv:1809.10122

Introduction

Motivation, experimental setup

Analysis

Muonic x-ray normalization, charged particle ID

Monte Carlo studies

Muon stopping distribution, transfer matrix

Systematics & Preliminary results

Physics cuts, unfolding

Funding provided in part by DOE

Motivation

Nuclear muon capture on aluminium

$$\mu^- + {}^{27}_{13}Al \rightarrow \nu_\mu + X + \{n, p, d, t, \alpha\}$$

is a dangerous background process for μ^- - e^- conversion experiments COMET Phase-I (talk by T. Y. Xing) and Mu2e (talk by R. Bonventre)

- Depending on their rate and spectra of the emitted protons, the tracking detectors have to be shielded which deteriorates their resolution, while neutrons can induce noise and electronic damage
- Relevant proton energy range 3.5 8 MeV; existing data only above 40 MeV.
- AlCap experiment at PSI to obtain this information.

COMET

Mu2e

Some history of µ-capture Al

Phys. Rev. Lett. 20, 596 (1968)

Rate = 15%(p, d, t, α)

Protons = 5.3%

(Sov. J. Nucl. Phys. 13 (1971) 310)

Phys. Rev. C 20 (**1979**) 1873 1.27mm Al target, threshold for protons was 30 MeV.

Muon source

Experimental setup

For this talk

Target: Al 50 μm

Momentum: 25.9 MeV/c, 26.2 MeV/c

Run time 25.2hrs

Muon beam rate: 6-8kHz

Other targets:

Al 100 μm	25.6 hrs
Si 50 µm	8.4 hrs
Ti 50 μm	10.4 hrs

Work packages

Today

WP1: Protons

Determine proton
emission rate following
muon nuclear capture to
assess tracker occupancy
and damage

WP2: Photons

- Gammas from nuclear capture and activation
- X-rays and gammas from other targets
- Noise hits
- Normalization

WP3: Neutrons

- Determine neutron spectra from materials used for shielding in Mu2e/COMET
- Cause noise hits, corrupt electronics' memory

Analysis overview

Normalization & Charged particle ID

Pileup protection

- Muons are selected with a 200 keV E threshold cut.
- Choose to reject muon events that occur within ±10µs to prevent double counting.
- Particles/x-ray from assoc. muons are used for further analysis.

Normalization

With **µAl 2p-1s** x-rays.

Main ²¹⁴Pb background at ~351 keV.

Time cut, |t|<200 ns.

Includes pileup protection.

$$\texttt{Total} = \frac{\texttt{Counts}}{\texttt{Acceptance} \times \texttt{Emission probability}}$$

2p-1s muonic X-rays	85337±1766
Acceptance @ 347 keV	(6.63±0.10) x 10 ⁻⁴
Emission prob. (/µ-stop)	79.8(8)% *
Stopped Muons	(161±4) x 10 ⁶

^{*} Phys Rev C 76, 035504 (2007)

Charged particle ID

- Take Log of x-, y-axis and rotate -45°.
- 2. Fit three gaussians (+ const. bkg.) for particles in ~1 MeV energy bins.
- 3. Possible to vary tightness of selection cut (1 4 σ).

Raw folded energy spectrum

- Reject events if origin muon is within ±10 µs from next and previous muon.
- Coincidence time within 200 ns of the mean.
- Reject time < 500 ns to significantly reduce μPb contamination.
- Particle ID within 3σ.

Monte Carlo studies

Muon beam simulation

- Monte Carlo samples are generated with muons of different kinetic energies to obtain stopping distributions for the various targets under study.
- These energies are being validated by runs with active Si target.

Recover initial particle energy

$$E_{loss} \approx \rho L \frac{dE}{dx}$$

Iterative Bayesian unfolding

[arxiv:1010.0632, arxiv:1105.1160]

Generate a transfer matrix, M

M contains geometrical and detector efficiencies as well as particle energy loss

information

Probability of obtaining E_{meas} from E_{true} .

$$E_{meas} = M \times E_{true}$$

Then we can apply unfolding/deconvolution to obtain E_{true}

Transfer matrix

- Initial starting position of particles determined from muon stopping distribution.
- Energy of particles uniformly distributed from 0 to 20MeV.

Energy unfolding

Preliminary results

Number of emitted charged particles

 $Rate = \frac{1}{0.56 \times 0.609 \times Number of stopped muons}$

μAl lifetime 500ns cut corr., 0.56. Al μ capture rate, 0.609 [Phys. Rev. C, 35, 1986].

Preliminary results

Systematics

Systematics

- μAl lifetime, t₂
- Coincidence time, dt = t₂-t₁
- Effect of pileup protection
- PID efficiency and contamination
- Veto efficiency (in-progress)
- Muon beam simulation and unfolding (in-progress)

The effects of different cut widths are evaluated in 500 keV bins up to 20 MeV.

Ge ¹ Right 24 Veto

^{*} Unfortunately, the left detector did not have a working veto

µAl lifetime

Cut [ns]	Correction factor
300	0.71
400	0.63
500	0.56
600	0.50

- We expected negligible contamination from μPb *(τ=75ns) protons after 500ns.
- Error is from comparison between 300ns and 500ns cut after correction.
- Lifetime reproduced and agrees with previous literature of *864(2) ns.

^{*} T. Suzuki et al., Phys. Rev. C 35 (1987) 2212.

Si-detector coincidence time

- The late time tail is due to protons with different E arriving with different dt spread.
- Separately fit the dts constructed from 1 MeV bins with a Gaussian.

Cut	Correction factor
1σ	0.682
2σ	0.954
3σ	0.996
4σ	0.999

Effect of pile-up protection

Larger t_{PP} reduces statistics but keeps ratio stable.

What's next?

No longer taking any data.

Finalize absolute rates and their uncertainities. Maybe @ PSI2019 this Oct.

- Al 50 μm Monte Carlo simulation
- Al 100 µm for consistency
- Ti 50 µm as an alternative muon target (Future experiments)
- Neutrons and gammas

Backup

PID efficiency and contamination

- Estimated by applying the same PID algorithm on MC generated charged particles.
- Simple gaussian smearing with detector resolution spread are also added.
- From the efficiency matrix, PID for charged particles are ~99%.

$$egin{array}{l} p_{ exttt{meas}} \ d_{ exttt{meas}} \ d_{ exttt{tmeas}} \ d_{ exttt{true}} \ d_{ exttt{tru$$

$$\epsilon_{3\sigma} = \begin{bmatrix} 0.9876 & 0.0001565 & 0.0002317 \\ 0.001582 & 0.9926 & 0.01685 \\ 0.0009489 & 0.04443 & 0.9834 \end{bmatrix}$$

Muon centred tree structure

Typical pulse structure

- Pulse passes preset threshold, triggering data taking in that channel (each channel is auto-triggered)
- Number of presamples before trigger used to calculate pedestal, preset number of samples taken
- Maximum height from pedestal taken as energy
- Interpolated clock tick where pulse hits
 10% of maximum taken as time

μAl lifetime (from Deuterons)

Still agrees with the published lifetime data although not as well as protons.

