

Recent Cross-Section Results from MicroBooNE

Pip Hamilton on behalf of the MicroBooNE collaboration

Overview

- Neutrino Cross-Sections in LArTPCs
- The MicroBooNE Experiment
- MicroBooNE Cross-Section Results
 - Charged Current Inclusive Cross-Section
 - Charged Current π^0 Cross-Section
 - Charged Particle Multiplicity Measurement
 - Charged Current N-Proton Kinematic Measurements
 - NuMI $\nu_{\rm e}$ Charged Current Selection
- Conclusions

Neutrino Cross-Sections in LArTPCs

SYRACUSE UNIVERSITYWhat is a LArTPC?

• Liquid Argon Time Projection Chamber

- Volume of liquid argon held under a uniform electric field.
- Charged particles produced by neutrino interactions ionise Ar atoms along their path.
- Electric field drifts ionisation electron to planes of sense wires where they are collected and read out.
- Ar scintillation light gives a timestamp for the interaction, allowing reconstruction in 3D.

Past, Present & Future LArTPCs

- Past: ICARUS, ArgoNeuT
- Present: MicroBooNE, ProtoDUNE
- Future: SBN, DUNE

SYRACUSE UNIVERSITY LATTPC Advantages

- Millimetre-scale resolution.
- Built-in calorimetry from charge deposition.
- Excellent particle identification capabilities.

MBOONE SYRACUSE UNIVERSITY Neutrino Cross-Sections

To achieve the potential of next-generation oscillation experiments, we must control the systematic uncertainties from our knowledge of neutrino cross-sections.

- Accurately reconstructing the neutrino energy requires a detailed understanding of neutrino-nucleus interactions.
- Comparative lack of data on Ar, which is a large, complex nucleus!

- LArTPCs are a detector technology whose time has come.
- Exploiting the advantages of LArTPC imaging, MicroBooNE can measure neutrino crosssections in fine detail and with high statistics.
- Understanding v-Ar cross-sections will be necessary for the success of DUNE and the SBN programme as oscillation experiments.

The MicroBooNE Experiment

SYRACUSE UNIVERSITY The MicroBooNE Detector

- 170 tons of LAr (active volume 90 tons).
- Over 8,000 wires, spaced 3mm apart.
 - 1 vertical collection plane
 - 2 induction planes at ±60°
- 32 8" PMTs behind wire planes.

The MicroBooNE Beam

Pip Hamilton

- 470m downstream from BNB beam dump.
- Also samples NuMI beam at an off-axis angle of 135 mrad.
- Collecting data since October 2015.
- 1.32×10^{21} POT collected in the BNB to date.

11

MicroBooNE Cross-Section Results

MicroBooNE Cross-Sections

Charged Current Inclusive

First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at $E_v \sim 0.8$ GeV with the MicroBooNE Detector

Accepted to PRL, arXiv:1905.09694

Charged Current π⁰

First Measurement of v_{μ} Charged-Current π^{0} Production on Argon with a LArTPC

Phys.Rev. D99 (2019) no.9, 091102, arXiv:1811.02700

Charged Particle Multiplicity

Comparison of v_{u} -Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions

Eur. Phys. J. C79 (2019) no.3, 248, arXiv:1805.06887

Charged Current N Protons

Selection of v_{μ} charged–current induced interactions with N>0 protons and performance of events with N=2 protons in the final state in the MicroBooNE detector from the BNB

MicroBooNE public note 1056

• NuMI v_e Selection

Automated Selection of Electron Neutrinos from the NuMI beam in the MicroBooNE Detector and Prospects for a Measurement of the Charged-Current Inclusive Cross Section

MicroBooNE public note 1054

Charged Current Inclusive

Signal definition: v_{μ} + Ar $\rightarrow \mu$ + (other particles)

- Simplest and highest-statistics cross-section channel to measure, with a robustly defined final state.
- Global test of neutrino interaction models: sum of all CC channels.
- Proves our understanding of MicroBooNE simulation and reconstruction.
- Direct bearing on v_{μ} disappearance for DUNE.

CC Inclusive Selection

Data Sample: 1.6 × 10²⁰ POT

To measure charged-current v_{μ} interactions in MicroBooNE, we face 3 main challenges:

- **Cosmic rejection:** MicroBooNE is a surface-level detector, experiences a flux of cosmic muons much higher than the rate of neutrino interactions.
- Vertex identification: Busy, detailed images make it non-trivial to distinguish true neutrino interaction point.
- Energy reconstruction: Detector is only 2.5m wide ⇒ not all neutrinoinduced muons are contained.

CC Inclusive Selection

Cosmic mitigation

- Use scintillation light to identify tracks originating in the beam window.
- Reject through-going muons
- Reject stopping muons by looking for Michel decay.

Vertex identification

- Pandora reconstruction software

Energy reconstruction

 Use multiple Coulomb scattering to assess muon momentum by fitting scattering angle along trajectory.

Using these tools, selection achieves

Efficiency = 57%, **Purity** = 50%

SYRACUSE UNIVERSITY CC Inclusive Results

Flux-integrated cross-section:

Systematic	Relative uncertainty
Beam flux	12.4%
Cross-section modelling	3.9%
Detector response	16.2%
Dirt background	10.9%
Cosmic background	4.2%
TOTAL	23.8%

BOONE SYRACUSE UNIVERSITY CC Inclusive Results

SYRACUSE UNIVERSITY CC Inclusive Results

SYRACUSE UNIVERSITY Charged Current π^0

Signal definition: v_{μ} + Ar $\rightarrow \mu$ + π^{0} + (other particles)

- π^0 decay to $\gamma\gamma$ is a major background for v_e appearance searches.
- $CC\pi^0$ is easier to measure than $NC\pi^0$ and helps constrain some of the same processes.
- Demonstrates LArTPC shower reconstruction.
- Never before studied on argon.

SYRACUSE UNIVERSITY CC\pi^0 Selection

Data sample: 1.6×10^{20} POT

In addition to cosmic rejection, vertex finding etc., look for a vertex with a muon track and one or more associated EM showers.

An EM shower is deemed 'associated' if its extrapolated vector comes within 4cm, and its point of origin lies within 64cm of the vertex.

This selection achieves

```
Efficiency = 16%, Purity = 56%
```


SYRACUSE UNIVERSITY Charged Current π^0

Flux-integrated cross-section:

ANL & BNL measurements exclude additional charged mesons in final state.

Systematic	Relative uncertainty
Beam flux	16%
Interaction model	17%
Detector simulation	21%
TOTAL	31%

Expect detector systematics to be reduced by ongoing calibration.

BOONE SYRACUSE UNIVERSITY Charged Particle Multiplicity

Signal: v_{μ} + Ar $\rightarrow \mu$ + (N charged particles) + (other particles)

- Empirical test of scattering models used in neutrino generators.
- Few measurements on argon.
- Measure relative event fraction in each multiplicity bin, not cross-section.

Data sample: 5×10^{19} POT **Selection:** similar to CC inclusive

BOONE Charged Particle Multiplicity ^{0.8} ^{0.8}

Systematic	Relative uncertainty				
	M=1	M=2	M=3	M=4	
MC statistics	2%	3%	7%	22%	
Track efficiency	7%	11%	25%	34%	
Background model	2%	2%	0%	0%	
Flux shape	0%	0.4%	0.2%	0.5%	
Electron lifetime	0.5%	0.1%	6%	5%	

- Observe fewer M=3 events than GENIE prediction: consistent with MINERvA and T2K.
- Observe more M=1 events than GENIE prediction: consistent with ArgoNeuT.

SYRACUSE UNIVERSIT Charged Current N Protons

Signal: v_{μ} + Ar $\rightarrow \mu$ + (1 or more protons)

- Direct measurement of 2p2h process
- Lower momentum threshold for proton reconstruction than other experiments.
- 4π angular acceptance. **Data sample:** 4.4×10^{19} POT

Selection: Similar to CC inclusive, exploiting LArTPC PID capabilities (93% accurate for protons). Efficiency = 29%, Purity = 77%

Experiment	Momentum Threshold	Kinetic Energy Threshold
MicroBooNE	300 MeV/c	47 MeV
MINERvA	450 MeV/c	102 MeV
Т2К	500 MeV/c	126 MeV

Charged Current N Protons

- Good initial agreement between data and simulation (GENIE).
- Work ongoing on detector systematics.

MicroBooNE Preliminary, 4.411e19 POT, stats only

on beam > off beam

.CC0 #0P

CC-other

Proton Candidate Multiplicity

Signal

Events

ď

200

0.8 0.0

Data/MC 1.6 1.4 1.2

Pip Hamilton

BOONE SYRACUSE UNIVERSITY Charged Current 2 Protons

Proton-to-proton θ

119 selected events; expect ~430 in full data sample.

SYRACUSE UNIVERSITY Selected CC N-Proton Events

$\begin{array}{l} \mbox{SYRACUSE UNIVERSITY} \\ \mbox{NuMI } \nu_e \mbox{ CC Selection} \end{array}$

Signal: $v_e / v_e + Ar \rightarrow e^{\pm} + (other particles)$

- $\nu_{\rm e}$ appearance is golden channel for SBN sterile search and DUNE; need to understand the cross-section on Ar.
- NuMI flux covers a larger range of the projected DUNE spectrum than BNB.

Data sample: 2.4×10^{20} POT

Selection: Based on Pandora EM shower tagging, achieves

Efficiency = 9%, Purity = 40%

SYRACUSE UNIVERS NuMI v_e CC Selection - Kinematic Measurements

Aim to bring this forward to full $v_{e} + v_{e}$ CC inclusive crosssection measurement; anticipate 14% (stat) + 30% (sys) sensitivity. 08/16/19

Selected NuMI v_e CC Events

NuMI: Run 5013 Subrun 11 Event 585

Pip Hamilton

Conclusions

Conclusions

- MicroBooNE has published three neutrino interaction results, each providing an empirical test of our interaction models.
 - CC inclusive
 - CCπ⁰
 - Charged particle multiplicity
- Many other measurements underway.
 - CC N protons
 - NuMI $\nu_{\rm e}$ CC
 - CC π 0 differential, CC 0 hadrons, exclusive v_e channels...
- Our automated event reconstruction and simulation is now tested and mature (and still growing more sophisticated).
- Higher-statistics samples will be available after we unblind our full dataset (1.32×10²¹ POT), allowing measurements of rare and highly specific channels.

Thank You!

OVAL

Backups

CCIncl Selection Performance

CCIncl Selection Efficiency

08/16/19

SYRACUSE UNIVERSITY

CCIncl Selection Efficiency

CCπ⁰ Shower Reconstruction Efficiency

SYRACUSE UNIVER

$CC\pi^0$ SYRACUSE UNIVERSITY

Diphoton Invariant Mass

SYRACUSE UNIVERSITY CPM Selection Cuts

	On-beam data		Off-beam data		MC default	
Selection cuts	Events	Passing rates	Events	Passing rates	Events	Passing rates
Total events	547616		2954586		188880	
v_{μ} events passing pre-cuts	4049	(0.74%/0.74%)	14213	(0.48%/0.48%)	7106	(3.8%/3.8%)
Events passing dead region cut	3080	(76%/0.56%)	10507	(74%/0.36%)	5632	(79%/2.9%)
Long track starting 46 cm below the TPC top surface	2438	(79%/0.44%)	7883	(75%/0.27%)	4795	(85%/2.6%)
Long track to vertex distance $< 3 \text{ cm}$	2435	(99%/0.44%)	7862	(99%/0.27%)	4781	(99%/2.5%)
Events with ≥ 80 collection plane hits	1930	(79%/0.35%)	5279	(67%/0.17%)	4387	(92%/2.3%)
Events passing wire gap cuts	1795	(93%/0.33%)	4954	(94%/0.16%)	4016	(92%/2.1%)

Multiplicities	On-beam data		Off-beam data		MC default	
	Events	Event rate	Events	Event rate	Events	Event rate
Total events	1795		4954		4016	
mult = 1	1379	77%	4113	83%	2599	65%
mult = 2	389	22%	828	17%	1186	30%
mult = 3	26	1.4%	12	0.2%	210	5%
mult = 4	1	0.06%	1	0.2%	18	0.4%
mult = 5	0	0%	0	0%	3	0.07%

SYRACUSE UNIVERSITY CC N Proton Proton Tracking Efficiency

SYRACUSE UNIVERSITY CC N Proton **Selection Model Dependence**

Topology	Composition (GENIE Default)	Composition (GENIE Alternative)
$CC0\pi0Proton$	0.1%	0.3%
$CC0\pi 1Proton$	6.3%	6.9%
$CC0\pi 2Proton$	83.%	77.9%
$CC0\pi NProton$	0.%	0%
$CC1\pi NProton$	5.5%	9.3~%
$CCN\pi NProton$	1.%	0.65%
$CC \nu_e$	0.%	0%
NC	3.35%	4.3%
OOFV	0.2%	0.3%
cosmic	0.7%	0.4%
Efficiency $CC0\pi 2Proton$	14.7%	15.2%

Model element	GENIE Default	GENIE Alternative
Nuclear Model	Bodek-Ritchie Fermi Gas	Local Fermi Gas
Quasi-elastic	Llewellyn-Smith	Nieves
Meson-Exchange Current	Empirical	Nieves
Resonant	Rein-Seghal	Berger-Seghal
Coherent	Rein-Seghal	Berger-Seghal
FSI	hA	hA2014

NuMI v_e Selection Efficiency

