Particle Physics in Korean Neutrino Observatory

Sunny Seo IBS

KNO Satellite Meeting
NuFACT 2019
2019.08.25

Why Korean Neutrino Observatory?

✓ Excellent physics cases (CPV, MO, proton decay,..) using long baseline neutrino beam.

Different systematics from Hyper-K & DUNE

✓ J-PARC neutrino beam passes through Korea.

We need to build only a detector.

✓ Excellent astronomy/astrophysics cases: Supernova burst/relic v, solar v, multi-messenger...

ve appearance probability: address 3 key parameters

solar term: suppressed by Δ^2_{21}

 $O(10^{-3})$ @ 1st osc. Max $O(10^{-2})$ @ 2nd osc. Max

suppressed by $\sin^4\theta_{13}$

2% correction to the 1st term

Korean Neutrino Observatory

Neutrino Oscillations in Kamioka & Korea

Off-axis Beam and Matter Density

Matter profile along the T2K baseline

Matter term:

$$r_A = 2\sqrt{2}G_F N_e E_\nu / \Delta m_{31}^2$$

More matter effects

- → better MO determination
 - Longer baseline
 - Higher neutrino energy
 - Higher matter density

Energy vs. Baseline

2nd Oscillation maxima in Korean sites

Super-K (2027) → Hyper-K (2037)

Statistical errors are reduced very much at HK but no improvement in degeneracies.

Mt. Bisul Site

This is the high energy option.

- Good separation between hierarchies especially at high-energy
- means very little appearance at flux peak. Instead most effect is in "tail" regions.
- Stats are quite good because of small OA angle.
- Inversion of Hierachy enhancement for lowenergy events

Mt. Bisul Site

Mt. Bisul Site

Broad Physics Program

Neutrino Sources & Fluxes

The Hyper-Kamiokande detector

superb capabilities for a broad area of science, proven feasibility

Optimized for cost and quick start

Total volume: 260kton per tank Fiducial volume: 190kton per tank

(~×10 of Super-K per tank)

Start with one tank (funding request)

40% coverage with new sensor

×2 photon sensitivity

~40,000 50cm PMTs for inner det.

~6,700 20cm PMTs for outer det.

Enabling technology: new photosensors

HPK R12860

- Better performance than SK-PMT (R3600)
 - Photon detection efficiency ×2
 - Timing resolution ×2
 - Better pressure tolerance
- Intensive R&D for "multi-PMT" option by an international collaboration
 - Module of small PMTs in an enclosure

Multi-PMT

International Effort in Hyper-K

- Collection of small size (3 inch) PMTs in a single enclosure
- Adapted from KM3NET's original mPMT

Pro:

- --better timing properties
- --better directionality
- --better pressure tolerance
- --better vertex reconstruction near wall
 - → fiducial volume increase

Con:

larger number of channels

→ more expensive and power consumption

KNO Detector Options

☐ Twice bigger detector w/less photo coverage? ☐ Gd loading? (proton decay, SRN) ☐ PMT options: 20 inch PMT **mPMT** SiPMT etc... → We need sensitivity studies/R&D/detector design. → You have lots of opportunities in T2HKK/KNO!

Some R&D activities are on-going.

Why Leptonic CPV?

1. Which <u>flavor symmetry</u> model?

Understanding pattern of v mixing

Image credit: T. Ohlsson @KTH

Why CPV in Lepton Sector?

- CP structure in quark sector is well known.
 - → Small CPV in quark sector (< 10⁻⁷ %) can not explain baryon asymmetry of the universe.
- However, leptogenesis may explain baryon asymmetry, provided with large CPV in lepton sector.
- There is <u>hint</u> of maximal CPV in lepton sector.
 (~ 2sigma @T2K, NOvA)

$$P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}$$

$$\sin \delta \sin \left(\frac{\Delta m_{12}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{13}^{2}}{4E}L\right) \sin \left(\frac{\Delta m_{23}^{2}}{4E}L\right)$$

Expected sensitivity: CP violation

- Exclusion of $\sin \delta_{CP} = 0$
 - $\sim 8\sigma(6\sigma)$ for $\delta = \pm 90^{\circ}(\pm 45^{\circ})$
 - >3 σ (>5 σ) significance for ~76%(58%) of δ_{CP} space
- δ_{CP} resolution:
 - 22° for δ_{CP} =±90°
 - 7° for δ_{CP} =0° or 180°

Seamless program of Japan-based experiments for study of CP-violation T2K→T2K-II→HK

T2HKK White Paper November 21st 2016

~ 4 months later from the inauguration

arXiv:1611.06118

(60 pages)

Updated version is published. PTEP 2018,6, 1-56

Physics Potentials with the Second Hyper-Kamiokande Detector in Korea

(Hyper-Kamiokande Proto-Collaboration)

- K. Abe, ^{57,59} Ke. Abe, ²⁴ H. Aihara, ^{59,60} A. Aimi, ¹⁸ R. Akutsu, ⁵⁸ C. Andreopoulos, ^{28,43}
- I. Anghel,²¹ L.H.V. Anthony,²⁸ M. Antonova,²⁰ Y. Ashida,²⁵ M. Barbi,⁴⁴ G.J. Barker,⁶⁶
 - G. Barr, ⁴⁰ P. Beltrame, ¹¹ V. Berardi, ¹⁶ M. Bergevin, ³ S. Berkman, ² T. Berry, ⁴⁵
- S. Bhadra,⁷³ F.d.M. Blaszczyk,¹ A. Blondel,¹² S. Bolognesi,⁶ S.B. Boyd,⁶⁶ A. Bravar,¹²

δ_{CP} & MO Sensitivity Studies

- ** Simulation parameters **
- 2.7x10²² POT with $v : \overline{v} = 1 : 3$ operation ratio
 - → 10 years of operation with 1.3 MW beam
- 187 kton fiducial volume (compared to 22.5 kton for SK)
- Baseline to Korea is 1100 km
- Off-axis beam: 1.5°, 2.0°, 2.5°
- Oscillation parameters:

$$|\Delta m_{32}^2| = 2.5 \times 10^{-3} \text{ eV}$$

 $\sin^2 \theta_{23} = 0.5$
 $\sin^2 2\theta_{13} = 0.085$
 $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}$
 $\sin^2 \theta_{12} = 0.304$
 $\delta_{cp} = 0, \pi/2, \pi, 3\pi/2$

◆Note: Relatively simple systematic uncertainty model is used.
More realistic systematic uncertainty implementation is needed.

δ_{CP} Sensitivities

Fraction of δ_{CP}

arXiv:1611.06118 PTEP 2018, 6, 1-56

Note: LBL sensitivity study was also independently done using GLoBES in PRD 96,033003 (2017).

δ_{CP} Precision Sensitivities

→ Very important for flavor symmetry model of neutrino mixing S. Petcov in ICHEP 2018

At maximum CP violation: JD+KD 1.5°: $\sigma(\delta_{CP})$ = 13~14 degree

JD x 2 : $\sigma(\delta_{CP}) \sim 17$ degree

JD x 1 : $\sigma(\delta_{CP})$ ~ 22 degree

b.f.v. of $\sin^2 \theta_{ij}$ (Esteban et al., Jan., 2018) + the prospective precision used.

Why v Mass Ordering (MO)?

Fractional Flavor Content varying $\cos \delta$

- 1. Important input to CPV measurement
- 2. Important input to flavor models

Current Status of v MO

** Cosmological measurement

(indirect / independent)

favors normal ordering 3 times

more from sum of v mass

 \triangleright Current best fit: normal ordering at 3.4 σ from global fit

Front. Astron. Space Sci., 09 October 2018

(T2K, NOvA) + (SK) + (DB, RENO, DC)

Mass Ordering Sensitivities

Normal

arXiv:1611.06118 PTEP 2018, 6, 1-56

Inverted

JD+KD 1.5°: 6 ~ 8 σ for all δ_{CP}

JD x2 : 1 ~ 4.5 σ for all δ_{CP}

 $(< 3 \sigma \text{ for most cases})$

JD+KD 1.5°: 5.5 ~ 7 σ for all δ_{CP}

JD x2 : 1 ~ 5 σ for all δ_{CP}

 $(< 3 \sigma \text{ for most cases})$

Beam + Atm. Data

Mass ordering sensitivity

Octant Sensitivity: Beam + Atm.

Atmospheric Parameter Sensitivity

Neutrino oscillation parameters

High precision oscillation parameter measurement:

1.3% $\delta(\sin^2\theta_{23}) \sim 0.006 \text{ (for } \sin^2\theta_{23}=0.45)$ 3% $\delta(\sin^2\theta_{23}) \sim 0.015 \text{ (for } \sin^2\theta_{23}=0.50)$ $\delta(\Delta m^2_{32}) \sim 1.4 \times 10^{-5} \text{eV}^2$ $\sim 0.6\%$

Non-standard v Interaction Sensitivity

$$H = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta m_{21}^2 & 0 \\ 0 & 0 & \delta m_{31}^2 \end{pmatrix} U^{\dagger} + V \end{bmatrix} V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$$

$$V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$$

 $A \equiv 2\sqrt{2}G_F N_e E$ arXiv:1611.06118

PTEP 2018, 6, 1-56 T2HKK, OA 1.5, 3σ

T2HKK, OA 1.5, 3σ

D. Marfatia@ICHEP2018:

arXiv:1612.01443

"T2HKK has the best sensitivity to CP phase (even) in the presence of NSI."

Proton Decay Search

- Only way to directly probe Grand Unified Theory
- Two major modes predicted by many models

Mediated by gauge bosons

$$p\left\{\begin{matrix} u \\ u \\ d \end{matrix}\right\} \xrightarrow{g} \left\{\begin{matrix} e^{\dagger} \\ \overline{d} \\ d \end{matrix}\right\} \pi^{0}$$

$$p \rightarrow e^{+}\pi^{0}$$

$$\Gamma(p \rightarrow e^{+}\pi^{0}) \sim \frac{g^{4}m_{p}^{5}}{M_{X}^{4}}$$

SUSY mediated

$$\Gamma(p \to \overline{v}K^+) \sim \frac{\tan^2 \beta \times m_p^5}{M_{\tilde{q}}^2 \times M_3^2}$$

Need broad searches including other possible modes

p→e⁺π⁰ search in Hyper-K

Background: Atmospheric Neutrinos

Improvement for Proton decay w/ Gd

Neutron multiplicity for

If one proton decay event is observed at Super-K after 10 years Current background level: 0.58 events/10 years Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44% to 9%.

Discovery Potential for p -> $e^+\pi^0$

- This mode's efficiency does not depend much on cathode coverage above 20%
- Background reduction though is improved by Gd loading

Discovery Potential for $p \rightarrow vK^+$

- Efficiency depends considerably on coverage
- Background reduction is improved by Gd loading

Proton Decay Limits & Sensitivities

Sunny Seo, IBS

Conclusion

- ☐ Excellent physics cases w/ different systematics.
 - Neutrino mass ordering determination
 - CPV, CP precision, CP coverage
 - Non-standard v interaction
 - Solar/SN/SRN etc...
- ☐ Physics sensitivities are better w/ the KNO detector.
- ☐ World class discoveries are expected to be made.

CPV, MO, SN/SRN, proton decay (?) etc...

☐ Huge opportunities for you in KNO!