# Neutrino oscillations and PMNS unitarity with IceCube/DeepCore and the IceCube Upgrade

Tom Stuttard for the IceCube collaboration
Niels Bohr Institute
NuFACT 2019



VILLUM FONDEN



CECUBE



50 m

1450 m

2450 m

2820 m

## **Detecting neutrinos**

- Primarily detect v-ice **Deep Inelastic Scattering** (DIS) interactions
- **Charged-** and **Neutral-Current** (CC/NC)
- Two event topologies @ oscillation energies:





## Atmospheric neutrino oscillations in DeepCore

- mHz atmospheric neutrino detection rate @ O(10 GeV)
- Maximal  $v_{\mu}$  disappearance for Earth-crossing (up-going) neutrinos



# **PMNS** unitarity

- **PMNS** mixing matrix is **unitary** in standard oscillation picture
  - e.g. mixing between the 3 known neutrino flavours
- Additional (sterile?) states → 3x3 matrix is subset of full unitary matrix
- Test unitarity by measuring 3x3 matrix elements

•  $v_{ au}$  elements least well measured

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \vdots \end{pmatrix}$$





#### $-4\operatorname{Re}\{U_{\tau 3}^*U_{\mu 3}\left(U_{\tau 1}^*U_{\mu 1}+U_{\tau 2}^*U_{\mu 2}\right)\}$

#### $v_{ au}$ appearance

- Measure  $v_{\tau}$  sector via  $\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{\tau}$  measurements ( $v_{\tau}$  appearance)
- Challenging measurement:
  - CC cross section suppressed by  $\tau$  mass  $\rightarrow$  low stats
  - Produced  $\tau$  decays ~instantly  $\rightarrow$  PID difficult
- 3 measurements to date
  - Beam: OPERA
  - Atmospheric: SuperK, DeepCore
- Can interpret results as:
  - PMNS elements measurement
  - $v_{ au}$  cross section measurement



#### $v_{ au}$ appearance @ DeepCore



Strong  $v_{\mu} 
ightarrow v_{ au}$  oscillations for Earth-crossing neutrinos

#### $v_{ au}$ appearance @ DeepCore







-0.5

 $10^{1}$ 

E<sub>true</sub> [GeV]



1.0

0.6 8

#### Statistically fit overall $v_{ au}$ contribution

- Perform  $v_{\mu}$  disappearance fit
- Allow  $v_{ au}$  normalisation to vary w.r.t. unitarity

## DeepCore $v_{\tau}$ appearance results

2 measurements performed with 3 years of DeepCore data [PRD 2019]

#### Data vs MC (best fit)



Data fit in [energy, cos(zenith), PID] space Searching for 3D distortions (shape-only)



## DeepCore $v_{ au}$ appearance results

2 measurements performed with 3 years of DeepCore data [PRD 2019]



# DeepCore $v_{\tau}$ appearance results

2 measurements performed with 3 years of DeepCore data [PRD 2019]



# DeepCore $v_{ au}$ appearance results

2 measurements performed with 3 years of DeepCore data [PRD 2019]



## DeepCore $v_{ au}$ appearance results

- 2 measurements performed with 3 years of DeepCore data [PRD 2019]
  - Consistent results

# Take away message

- World-leading  $v_{\tau}$  appearance measurement precision @ DeepCore
- Results consistent with standard oscillation picture

# **Coming soon**

New measurement with >5x statistics



SuperK

# The IceCube Upgrade

- NSF have funded a \$30M extension to IceCube
  - Deployment in 2022/3
- 700 multi-PMT sensors
- Improved ice calibration





## A low energy neutrino detector

- Dense instrumentation in 2 Mton core



## **Upgrade performance**

Major improvement in detection rate and energy/direction resolution



## **Upgrade performance**

Major improvement in detection rate and energy/direction resolution



**Enhanced rate for all oscillation energies** 

## Oscillations @ the IceCube Upgrade

- $v_{\tau}$  appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM



## Oscillations @ the IceCube Upgrade

- $v_{\tau}$  appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM



## Oscillations @ the IceCube Upgrade

- $v_{ au}$  appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM



#### Other IceCube BSM oscillation searches

IceCube/DeepCore is a versatile oscillations detector

• Large range of energies, baselines, matter profiles

Broad BSM oscillation program



#### See other talks @ NuFact

WG1 - Latest Results on Neutrino Oscillation from the IceCube Neutrino Observatory

WG5 - Search for Dark Matter and BSM Physics with the IceCube Neutrino Observatory

WG1+5 Sterile Neutrino Searches with IceCube



## **Summary**

 Testing PMNS unitarity offers a powerful, model-independent search for new neutrino states and other BSM physics

- Currently limited by precision in  $v_{\tau}$  sector, but improving with world-leading  $v_{\tau}$  appearance measurements by IceCube/DeepCore
- Recently funded IceCube Upgrade can achieve 10% precision in  $v_{\tau}$  sector after 1 year of operation
- Exciting IceCube/DeepCore/Upgrade oscillation physics program over the coming decade

# **Backup slides**

#### **PMNS** elements measured

#### Parke, Ross-Lonergan, arXiv:1508.05095

| Experiment                                                                        | Measured quantity with unitarity                                                                                                  | Without unitarity                                                                                            | Normalisation                                                               |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Reactor SBL $(\overline{\nu}_e \to \overline{\nu}_e)$                             | $4 U_{e3} ^2 (1 -  U_{e3} ^2) = \sin^2 2\theta_{13}$                                                                              | $4 U_{e3} ^2 \left(U_{e1} ^2 +  U_{e2} ^2\right)$                                                            | $\left(  U_{e1} ^2 +  U_{e2} ^2 +  U_{e3} ^2 \right)^2$                     |
| Reactor LBL $(\overline{\nu}_e \to \overline{\nu}_e)$                             | $4 U_{e1} ^2 U_{e2} ^2 = \sin^2 2\theta_{12}\cos^4 \theta_{13}$                                                                   | $4 U_{e1} ^2 U_{e2} ^2$                                                                                      | $( U_{e1} ^2 +  U_{e2} ^2 +  U_{e3} ^2)^2$                                  |
| SNO $(\phi_{CC}/\phi_{NC})$ Ratio)                                                | $ U_{e2} ^2 = \cos^2 \theta_{13} \sin^2 \theta_{12}$                                                                              | $ U_{e2} ^2$                                                                                                 | $ U_{e2} ^2 +  U_{\mu 2} ^2 +  U_{\tau 2} ^2$                               |
| ${ m SK/T2K/MINOS} \ ( u_{\mu}  ightarrow  u_{\mu})$                              | $ \frac{4 U_{\mu 3} ^2 (1 -  U_{\mu 3} ^2)}{4\cos^2 \theta_{13} \sin^2 \theta_{23} (1 - \cos^2 \theta_{13} \sin^2 \theta_{23})} $ | $4 U_{\mu 3} ^2 \left(U_{\mu 1} ^2 +  U_{\mu 2} ^2\right)$                                                   | $( U_{\mu 1} ^2 +  U_{\mu 2} ^2 +  U_{\mu 3} ^2)^2$                         |
| $\begin{array}{c} {\rm T2K/MINOS} \\ (\nu_{\mu} \rightarrow \nu_{e}) \end{array}$ | $4 U_{e3} ^2 U_{\mu 3} ^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$                                                               | $-4\operatorname{Re}\{U_{e3}^*U_{\mu 3}\left(U_{e1}^*U_{\mu 1}+U_{e2}^*U_{\mu 2}\right)\}$                   | $ U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* ^2$             |
| ${ m SK/OPERA} \ ( u_{\mu}  ightarrow  u_{	au})$                                  | $4 U_{\mu 3} ^2 U_{\tau 3} ^2 = \sin^2 2\theta_{23}\cos^4 \theta_{13}$                                                            | $-4\operatorname{Re}\{U_{\tau 3}^* U_{\mu 3} \left(U_{\tau 1}^* U_{\mu 1} + U_{\tau 2}^* U_{\mu 2}\right)\}$ | $ U_{\mu 1}U_{\tau 1}^* + U_{\mu 2}U_{\tau 2}^* + U_{\mu 3}U_{\tau 3}^* ^2$ |

# DeepCore $v_{\mu}$ disappearance

• 3 year result, 2018 PRL [1707.07081]



## v<sub>→</sub> appearance analysis templates



#### **Reconstructed parameters**



28

#### Tom Stuttard

#### ν<sub>τ</sub> appearance analysis systematics

