Neutrino oscillations and PMNS unitarity with IceCube/DeepCore and the IceCube Upgrade

Tom Stuttard for the IceCube collaboration

Niels Bohr Institute
NuFACT 2019
Huge 1 km3 detector

\textbf{GeV – PeV ν}

Atmospheric & astrophysical

IceCube Lab

50 m

1450 m

2450 m

2820 m

Bedrock

IceCube Array

1 Gton

DeepCore

10 Mton

Eiffel Tower

324 m

Dense DeepCore sub-array

Sensitivity to $O(10 \text{ GeV}) \, \nu$

5160 PMTs detect Cherenkov photons
Detecting neutrinos

- Primarily detect ν-ice Deep Inelastic Scattering (DIS) interactions
- Charged- and Neutral-Current (CC/NC)

Two event topologies @ oscillation energies:

- Hadronic shower
 - NC/CC
 - Nucleon
 - Cascade
 - Track

Approx spherical ν_e CC
ν_τ CC
ν NC

| Detected light |
| 35 GeV |

$\nu/l(= e, \mu, \tau)$
Atmospheric neutrino oscillations in DeepCore

- mHz atmospheric neutrino detection rate @ O(10 GeV)
- Maximal ν_μ disappearance for Earth-crossing (up-going) neutrinos
PMNS unitarity

- **PMNS** mixing matrix is **unitary** in standard oscillation picture
 - e.g. mixing between the 3 known neutrino flavours

- Additional (sterile?) states → 3x3 matrix is subset of full unitary matrix

- Test unitarity by measuring 3x3 matrix elements
 - ν_τ elements least well measured

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]
\(\nu_\tau \) appearance

- Measure \(\nu_\tau \) sector via \(\nu_\mu \rightarrow \nu_\tau \) measurements (\(\nu_\tau \) appearance)

Challenging measurement:
- CC cross section suppressed by \(\tau \) mass \(\rightarrow \) low stats
- Produced \(\tau \) decays \(\sim \) instantly \(\rightarrow \) PID difficult

- 3 measurements to date
 - Beam: OPERA
 - Atmospheric: SuperK, DeepCore

- Can interpret results as:
 - PMNS elements measurement
 - \(\nu_\tau \) cross section measurement
ν_τ appearance @ DeepCore

Strong $\nu_\mu \rightarrow \nu_\tau$ oscillations for Earth-crossing neutrinos
$$\nu_\tau$$ appearance @ DeepCore

Appearance probability

Detected $$\nu_\tau$$ (truth)

IceCube Simulation
flux + oscillations
cross section + detector efficiency + cuts

Event rate [arb. units]
ντ appearance @ DeepCore

Appearance probability

ντ signal (reconstructed)

Cannot ID individual ντ
- Mostly appear as cascades

Detected ντ (truth)

Statistically fit overall ντ contribution
- Perform νμ disappearance fit
- Allow ντ normalisation to vary w.r.t. unitarity
DeepCore ν_τ appearance results

- 2 measurements performed with 3 years of DeepCore data [PRD 2019]

Data vs MC (best fit)

Data fit in [energy, cos(zenith), PID] space
Searching for 3D distortions (shape-only)
DeepCore ν_τ appearance results

• 2 measurements performed with 3 years of DeepCore data [PRD 2019]

Results

Nominal expectation
Unitary 3v PMNS

3x3 PMNS is subset of NxN?

Fewer ν_τ

More ν_τ

ν_τ cross section

ν_τ template scale relative to unitary expectation
DeepCore ν_τ appearance results

- 2 measurements performed with 3 years of DeepCore data [PRD 2019]
DeepCore ν_τ appearance results

- 2 measurements performed with 3 years of DeepCore data [PRD 2019]

Results

- Consistent with unitarity
- 35% precision (1σ)
- Modest increase in precision w.r.t SuperK

DeepCore results
(Consistent)
DeepCore ν_τ appearance results

- 2 measurements performed with 3 years of DeepCore data \[\text{PRD 2019}\]
- Consistent results

Take away message

- World-leading ν_τ appearance measurement precision @ DeepCore
- Results consistent with standard oscillation picture

Coming soon

New measurement with $>5\times$ statistics
The IceCube Upgrade

• NSF have funded a $30M extension to IceCube
 • Deployment in 2022/3
• 700 multi-PMT sensors
• Improved ice calibration
A low energy neutrino detector

- **Dense instrumentation** in 2 Mton core
 - Large increase in photocathode density \rightarrow sensitive to **1 GeV neutrinos**
Upgrade performance

- Major improvement in detection rate and energy/direction resolution
Upgrade performance

• Major improvement in detection rate and energy/direction resolution

Event rate

Cascade direction resolution

DeepCore

Upgrade

Huge increase in <10 GeV ν rate

Enhanced rate for all oscillation energies

3x improvement @ ν_τ appearance energies
Oscillations @ the IceCube Upgrade

- ν_τ appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM

\[\nu_\tau \text{ appearance sensitivity (1 yr)} \]

- 10% precision after 1 year
 (6% after 3 years)
Oscillations @ the IceCube Upgrade

- ν_{τ} appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM

ν_{τ} appearance sensitivity (1 yr)

ν_{μ} disappearance sensitivity (3 yr)

10% precision after 1 year (6% after 3 years)

Competitive with long baseline experiments in disappearance channel
Oscillations @ the IceCube Upgrade

- ν_τ appearance is Upgrade primary physics goal
- Broad oscillation program including mass ordering and BSM

Take away message

- IceCube Upgrade will offer huge gains in neutrino rates and resolutions
- 10% ν_τ appearance precision after only 1 year → major leap for PMNS unitarity studies
Other IceCube BSM oscillation searches

- IceCube/DeepCore is a versatile oscillations detector
 - Large range of energies, baselines, matter profiles
- Broad BSM oscillation program
Summary

• Testing **PMNS unitarity** offers a powerful, model-independent search for new neutrino states and other BSM physics

• Currently **limited by precision in** \(\nu_\tau \) **sector**, but improving with **world-leading** \(\nu_\tau \) **appearance** measurements by IceCube/DeepCore

• Recently funded **IceCube Upgrade can achieve 10% precision** in \(\nu_\tau \) sector after 1 year of operation

• Exciting IceCube/DeepCore/Upgrade oscillation physics program over the coming decade
Backup slides
PMNS elements measured

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Measured quantity with unitarity</th>
<th>Without unitarity</th>
<th>Normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor SBL ($\bar{\nu}_e \rightarrow \bar{\nu}_e$)</td>
<td>$4</td>
<td>U_{e3}</td>
<td>^2 \left(1 -</td>
</tr>
<tr>
<td>Reactor LBL ($\bar{\nu}_e \rightarrow \bar{\nu}_e$)</td>
<td>$4</td>
<td>U_{e1}</td>
<td>^2</td>
</tr>
<tr>
<td>SNO (ϕ_{CC}/ϕ_{NC} Ratio)</td>
<td>$</td>
<td>U_{e2}</td>
<td>^2 = \cos^2 \theta_{13} \sin^2 \theta_{12}$</td>
</tr>
<tr>
<td>SK/T2K/MINOS ($\nu_\mu \rightarrow \nu_\mu$)</td>
<td>$4</td>
<td>U_{\mu3}</td>
<td>^2 \frac{(1 -</td>
</tr>
<tr>
<td>T2K/MINOS ($\nu_\mu \rightarrow \nu_e$)</td>
<td>$4</td>
<td>U_{e3}</td>
<td>^2</td>
</tr>
<tr>
<td>SK/OPEPA ($\nu_\mu \rightarrow \nu_\tau$)</td>
<td>$4</td>
<td>U_{\mu3}</td>
<td>^2</td>
</tr>
</tbody>
</table>
DeepCore ν_μ disappearance

- 3 year result, 2018 PRL [1707.07081]
ντ appearance analysis templates

Truth parameters

Reconstructed parameters
ν_τ appearance analysis systematics
Ice/detector uncertainties

κ_1

$\kappa_2 \neq \kappa_3$