

Daegu, Republic of Korea August 25 - 31, 2019

Ye Zou, Maja Olvegård, Uppsala University, on behalf of the ESSnuSB WG3

Outline

- ESS and its proton linac
- Accumulator ring design
- Multi-particle simulation
- Summary

ESS and its proton linac

The European Spallation Source, ESS

100

FINLADE 1440 m SWEDEN NORWAY =540 km. ESTONIA Zinkgruvan L=365km, D=1100 m LATVIA 7 Oskarshamn L=260 km, D=500 m LITHUANIA und ESS

L=1090 km

D=1350 m

yhäsalmi L=1140 km

Lund, Sweden

DENMARK

The ESS proton linac

Parameter	Value
Ion species	Proton
Average beam power	5 MW
Peak beam power	125 MW
Ion kinetic energy	2 GeV
Average macro pulse current	62.5 mA
Average macro pulse length	2.86 ms
Duty cycle	4%
Pulse repetition rate	14 Hz

The ESS proton linac

Why to add the neutrino facility?

Because of the uniquely high power of the ESS linac we will have the opportunity to measure **with high precision** the neutrino CP-violating angle at the 2nd oscillation maximum

How to add the neutrino facility?

Linac modifications (See Benjamin Folsom's talk) Neutrino target station (See Loris D'Alessi's talk) Underground detectors (See Jason Park's talk)

What ESS Linac offers:

What neutrino target station requires (per target, 4 targets in total)

Accumulator ?

5 MW

Pulse divided into 4

< 1.6 MW

Accumulator

< 1.5 µs

The accumulator design

Accumulator design

Compress the pulse from the ESS linac by 3 orders of magnitude before sending to the target

- Energy increases from 2 GeV to 2.5 GeV
- 5 MW pulse divided into 4 sub-pulses with 0.1 ms gaps in between
- Total pulse duration maintains 2.86 ms, each sub-pulse duration 0.64 ms
- Extraction pulse length < 1.5 μ s, the circumference of the ring should be around 400 m, with a gap of ~10% for extraction
- Average beam current increase by $\sim 20\%$
- Injection turns ~500
- Space-charge tune shift requirement: < 0.2

Beam loss control (1 W/m)

Total beam loss <10⁻⁴

Uncontrolled beam loss usually comes from high space charge induced tune shift, beam injection, limited transverse and momentum acceptance, instabilities and so on

A 99.7% geometric emittance of 100 π mm mrad

Beam halo power < 4 kW, beam halo < 0.3%

Accumulator design (ESSnuSB vs SNS)

Parameters	ESSnuSB AR	SNS (1.4 MW)
Beam power on target (MW)	1.25	1.4
Beam energy (GeV)	2.5	1.0
Beam intensity (ppp)	2.2×10^{14}	1.5×10^{14}
Average macro-pulse beam current (mA)	62	25
Pulse repetition rate (Hz)	14/1351	60
Macro-pulse length (ms)	0.64	1
Pulse length after accumulation (μ s)	<1.5	0.7
Accumulation turns	~500	1070
Bunching factor	>0.9	0.25
Un-normalized painted beam emittance π mm-mr	100	300
Space charge tune shift	-0.03	-0.15

$$\Delta Q = -\frac{r_p n_t}{2\pi\beta^2\gamma^3\epsilon_{H,V}}\frac{F}{B_f}$$

Space charge tune shift

Challenge: Beam injection

Beam injection (H⁻ or p?)

- Proton: Liouvillean, Beam loss on septum unavoidable if many injection turns
- H-: Non-Liouvillean, proton can be overlaid on H- in phase space Circulating beam can also pass through the foil

H⁻ injection (foil stripping; following laser stripping development)

Transverse injection painting

- Painting beam can reduce space charge effect, and mitigate peak foil temperature
- Vary position of circulation beam at the foil by programming orbit bumps (H and V) in a dispersion-free region

29/08/19

Challenge: Foil temperature

- Stripping foil does not have enough time to be cooling down between each sub-pulse, which makes the foil peak temperature too high
- Possible ways to mitigate the temperature rise
 - Putting several foils along the horizontal plane
 - Varying injection point on the foil

First calculation results from Horst Schonauer

RF cavity

- RF cavity used to keep extraction gap clean during accumulation process, no acceleration
- Utilizing different kind of rf cavities (single harmonic, dualharmonic, and barrier rf cavities) to trap the beam
- Energy spread increased due to very small longitudinal synchrotron oscillation frequency if single harmonic or dual-harmonic rf cavities implemented
- Barrier rf cavity only affect head and tail particles to keep the extraction gap clean

Single and dual harmonic rf bucket

Barrier rf bucket

Lattice development

Developed by Horst Schonauer

Injection section

29/08/19

The whole ring

Dispersion and phase advance

- Long straight section and enough phase advance for beam injection and collimation
- Fixed injection chicane (9 cm) and fast programmable bump for injection painting
- The β-function perturbation caused by the injection chicane and the orbit bumps is less than 2%

Parameter	ESSnuSB	SNS1.4MW
Circumference (m)	384	220
Average radius (m)	61	35
Inj./Ext. Energy (GeV)	2.5/2.5	1/1
Repetition rate (Hz)	14	60
Ring dipole field (T)	1.3	0.74
Magnetic rigidity, $B\rho$ (T m)	11	5.7
Max beta hor./ver. (m)	29/35	20/13
Hor./Ver. Tune	8.2-8.3/8.3-8.4	6.3/5.8
Transition energy, $\gamma_{\rm T}$ (GeV)	5.8	4.95
Hor./Ver. natural chromaticity	-11.2/-12.4	-7.5/-6.3
Number of superperiods	4	4

Multi-particle simulation

Configurations for simulation

- Lattice developed by Horst Schonauer
- Simulation tools: PTC-PyORBIT
- Linac beam: Gaussian distribution in transverse plane and uniform in longitudinal
- Energy spread in Gaussian distribution
- On-momentum matched beam injection
- RF cavity: no RF cavity, dual harmonic RF cavity, barrier RF cavity
- Both direct and indirect space charge included
- Foil scattering included
- Chromaticity not corrected
- Correlated and anti-correlated painting

Basic parameters for simulations	Value
Hor./Ver. normalized rms emittance	0.35 mm mrad
Extraction gap	133 ns
Energy spread, 1 sigma	0.02%
Foil thickness	600 μg/cm ²
Hor./Ver. beta function at injection point	10 m/ 20 m
Hor./Ver. tune	8.24/8.38
Injection turns	481
Macro particles per turn	300
Pulse length per turn	1.2 μs
Beam intensity per turn	4.7×10 ¹¹
Barrier RF voltage	10 kV
Barrier RF phase	160 deg

Transverse beam distribution (correlated painting)

- Bump varying in exponential-like function
- Painting from inner to outer both in horizontal and vertical planes
- Space charge has little effect on particle distribution for correlated painting
- The painting scheme can paint quite uniform beam distribution in both transverse planes

Transverse beam distribution (anti-correlated painting)

- Bump varying in exponential-like function
- Painting in horizontal plane from inner to outer, in vertical plane from outer to inner
- Some beam halo exists in vertical plane due to anti-correlated painting scheme
- The painting scheme can paint quite uniform beam distribution as well

Tune and Emittance (correlated painting)

Very small tune spread

 (~ 0.05) , which fits the

calculation results

- If superperiods =1, red and yellow lines
- if superperiods =4, only red lines
- A higher superperiodicity is better

The fractional number of particles falling outside a particular normalized emittance

- 99.7% beam emittance: about 62 π mm mrad in horizontal and 63 π mm mrad in vertical plane
- Average foil hits:
 - Correlated 4.5 (SNS 2.7)
 - Anti-correlated 5.8 (SNS 5.0)
- RMS emittance: about 13 π mm mrad in horizontal and 11 π mm mrad in vertical plane
- Optimization ongoing.

Longitudinal beam distribution

Two main points

Point 1: Keep extraction gap clean during the whole accumulation process Point 2: Minimize the energy spread

No RF cavity

Point 2: excellent ($\sim \pm 0.1\%$)

0.02 0.0 (Ge 붜 -0.01 -0.02 Z (m) Point 1: excellent Point 2: large energy spread Point 1: small risk to leak

 $(\sim \pm 0.6\%)$

Point 1[•] excellent Point 2: excellent (~ $\pm 0.2\%$)

- Beam is quite stiff
- Particles leakage to the gap would be possible without RF cavity
- Quite large energy spread if dual harmonic rf cavity with high voltage (>10 kV) •
- Small risk to leak and small energy spread if dual harmonic rf cavity with low voltage (~5kV) ۲

-0.002

-0.004 -0.006

-0.008

-100

-50

Point 2: excellent ($\sim \pm 0.2\%$)

Very small risk to leak and very small energy spread if barrier rf cavity implemented

Ye Zou, Uppsala University

Summary and outlook

Where we are now:

- Good lattice
- Quite uniform painting results
- 99.7% geometric emittance $\sim 62 \pi$ mm mrad
- Tune spread: ~0.05
- Extraction gap kept clean well

What we plan to do

- Foil temperature mitigation
- Dynamic aperture studies
- Chromaticity correction
- Collimation system
- ...

Back-up slides

Resonance and superperiods

- Tune spread induced by space charge effect, natural chromaticity, and magnet imperfection is unavoidable.
- Tune spread should be far from each order of resonance, in particular, low order resonance (<=3) due to possible beam loss
- Space-charge tune shift requirement: < 0.2
- Transverse resonance condition:

 $mv_x + nv_y = iN$ m,n,i,N integers, l = |m| + |n| is the order of resonance, N is superperiodicity number.

- If *N*=1, black and red lines;
- if *N*=4, only red lines
- A higher superperiodicity is better

Temperature on foil for 56 Hz case

Horst Schönauer

Longitudinal motion with dual-harmonic RF system

Beam distribution after injection

- Large energy spread (0.6%) caused by dualharmonic RF cavity during longitudinal motion
- This energy spread could cause quite large tune spread (~0.14) due to nature chromaticity (-11.19, -12.41)
- The tune shift can be controlled by correcting the natural chromaticity with sextupoles, while this may introduce undesired nonlinear effects.

No RF cavities

- The beam is stiff enough
- Seems possible to maintain 100 ns gap for extraction without RF cavities at 2.5 GeV if only direct space charge considered
- Barrier RF cavities probably needed if indirect space charge considered

First consideration of collimation system

		SNS	ESSnuSB75		ESSnuSB100	
	Correlated	Anti-correlated	Correlated	Anti-correlated	Correlated	Anti-correlated
Е	120	160	75	75	100	100
<i>ε</i> ₁	140	180	95	95	120	120
<i>ε</i> ₂	280	200	190	115	240	140
Coll. Accept.		300	200		260	
Ring Accept.	480		380			480

 ε beam geometric emittance

29/08/19

- ε_1 primary collimator emittance
- ε_2 secondary collimator emittance

Correlated painting	$\varepsilon_2 > 2\varepsilon_1 > 2\varepsilon$
Anti-correlated painting	$\varepsilon_2 > \varepsilon_1 > \varepsilon$
Unit: π mm mrad	

Ye Zou, Uppsala University

Demonstration of Laser stripping for microsecond H- duration

- Reduce the required average laser power by 3 orders of magnitude:
 - Temporal matching of the laser pulse to the H– pulse structure (factor 70)
 - Tailoring of the H– beam trajectories (factor 10)
 - Optimization of H– beam size and divergence (factor 2-5)
- The achieved stripping efficiencies are comparable to the foilbased stripping schemes of about 95% – 98%
- Duration of the laser stripping event is still 2 orders of magnitude below typical millisecond operational pulse lengths (ESSnuSB 2.86/4 ms)
- Possible for millisecond pulse: using cavity to recycle the laser power to reduce the required average laser power

Sarah Cousineau et al., PRL 118, 074801 (2017)

Convergence study

