Overview of ESSnuSB to measure δ_{CP}

Monojit Ghosh (On behalf of ESSnuSB collaboration)

KTH Royal Institute of Technology Stockholm, Sweden

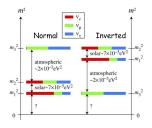
Nufact 2019 August 26 - 31, 2019, Daegu, Korea

Based on: (i) Blennow, Fernandez-Martinez, Ota, Rosauro, ESSnuSB WP6 physics performance report (ii) Ghosh, Ohlsson, 1906.05779

Neutrino Oscillation

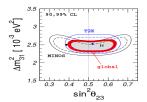
- Neutrino oscillation: transition from one flavor to another
- Reason: Flavour and mass eigenstates are not same

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{N} U_{\alpha i}^{\mathrm{PMNS}} |\nu_{i}\rangle$$


• The transition probability $\nu_{\alpha} \rightarrow \nu_{\beta}$:

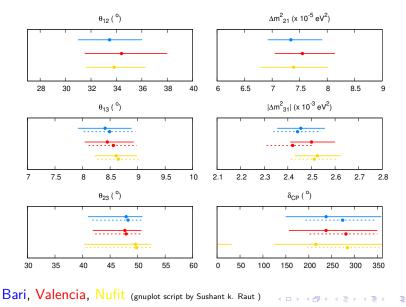
$$P_{lphaeta} = |\langle
u_eta |
u_lpha(t)
angle|^2$$

Parameters of neutrino oscillation:

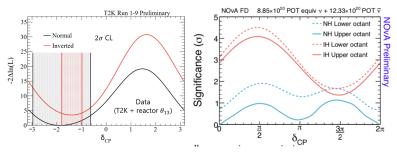

- Elements of U: Three mixing angles and one Dirac phase $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$
- Two mass squared differences: Appears in $P_{\alpha\beta}$ $\Delta_{21} = m_2^2 - m_1^2$, $\Delta_{31} = m_3^2 - m_1^2$
- L and E

Unknowns

- The sign of Δm_{31}^2 i.e., $\Delta m_{31}^2 > 0 \Rightarrow$ Normal Hierarchy (NH) or $\Delta m^2 < 0 \Rightarrow$ Invested Hierarchy (IH)
 - $\Delta m^2_{31} < 0 \Rightarrow$ Inverted Hierarchy (IH).


- The octant of θ_{23} i.e., $\theta_{23} > 45^{\circ} \Rightarrow$ Higher Octant (HO) or $\theta_{23} < 45^{\circ} \Rightarrow$ Lower Octant (LO).
 - δ_{CP} (violation and precision)

イロト イポト イヨト イヨト


3/17

Current status of oscillation parameters

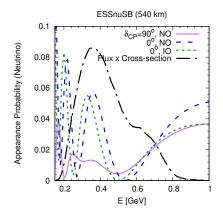
4/17

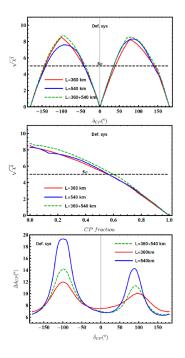
Results from T2K and NO ν A

 ${\rm NO}\nu{\rm A}$ best-fit is ruled by T2K > 2 σ More data will clear things

T2K talk by Francis Bench

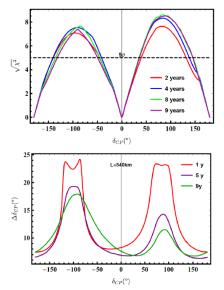
No ν a talk by Erica Smith


The ESSnuSB experiment


- 2.5 GeV proton beam
- 507 kt WC detector
- 10 years of running
- 540 km or 360 km

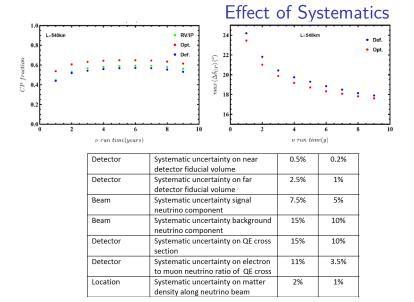
For more details see plenary talk on ESSnuSB by Marcos Dracos on tomorrow 10 AM

Probability and flux


- Designed to study physics at 2nd maximum
- Variation of probability wrt to δ_{CP} is larger in 2nd maximum
- Powerful experiment to measure δ_{CP} even with lower statistics

δ_{CP} Sensitivity

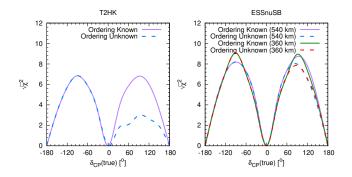
- 5+5 running
- 8 σ for maximal CPV
- 60% CP coverage for 5 σ CPV
- upto 6° CP precision


Effect of run-time

The rest of the 10 years running in antineutrino mode

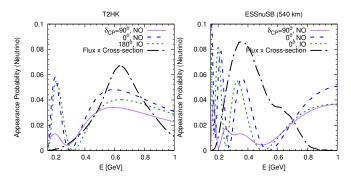
9/17

э

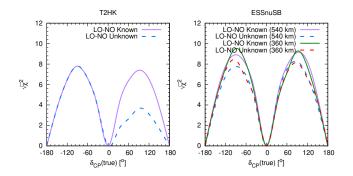

RV/IP: 374 kt with 3% overall systematics (cf T2HK)

10/17

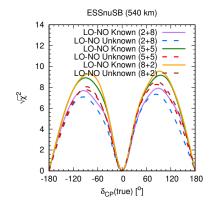
► < ∃ >


Comparison with T2HK

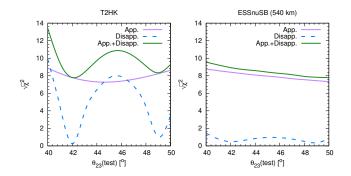
Effect of hierarchy


- $\theta_{23} = 45^{\circ}, 5+5$
- Drop at $+90^{\circ}$ is not significant for ESSnuSB
- CP sensitivity of ESSnuSB is independent of hierarchy information

Reason


- CPV sensitivity is the separation between the solid and dashed curves
- Green dashed and purple solid is closer in T2HK
- Hierarchy degeneracy is negligible at 2nd maximum

Effect of octant


- $\theta_{23} = 42^{\circ}, 5+5$
- Small drop at -90° for ESSnuSB
- Octant degeneracy affects ESSnuSB

Resolving Octant degeneracy

- Dominant antineutrino run is required to reduce the effect
- But this also reduce the sensitivity

Comment on θ_{23} precision

- $\theta_{23}(true) = 42^{\circ}, \ \delta_{CP}(true) = -90^{\circ}, \ 5+5$
- Disap channel of ESSnuSB is very shallow
- This affect the CP sensitivity

Summary

- ESSnuSB is a powerful experiment to measure δ_{CP} at 2nd maximum
- Sensitivity in terms of run-time and systematics have been discussed
- Both T2HK and ESSnuSB are complementary to each other

Summary

(日)

17/17

- ESSnuSB is a powerful experiment to measure δ_{CP} at 2nd maximum
- Sensitivity in terms of run-time and systematics have been discussed
- Both T2HK and ESSnuSB are complementary to each other

Thank you