21st International Workshop on Neutrinos from Accelerators – Daegu, South Korea

Details of T2K oscillation analysis

C. Bronner on behalf of the T2K collaboration August 29th, 2019

The T2K experiment

T2K Oscillation Analysis Overview

Likelihood analysis: compare observed data at the far detector to predictions based on a model of the experiment to make measurements

(Near and far detector fits can be done sequentially or simultaneously)

T2K Oscillation Analysis Neutrino flux prediction

Neutrino flux predicted using a series of simulations

Uncertainty on flux prediction varies between 8 and 12%, depending on neutrino flavor and energy

T2K Oscillation Analysis Neutrino interaction model

 Dominant interaction mode is CCQE

- Other interactions can populate region of interest
- Select interaction models using external data
- Nominal predictions from NEUT 5.3.2

- Uncertainties on model parameters (M_A, pF,...)
- Additional uncertainties for certain modes (shape, normalization)
- Simulated Data Studies" (SDS) for alternative models and uncertainties that could not be implemented

Near detector analysis Event selection

- Enriched in different type of interactions
- Interactions on different targets (FGD1: CH target, FGD2: 42% water)
- > additional samples for wrong sign background in v-mode

Near detector analysis Fits

 2 different fitters giving consistent results:
 * "Mach3": MCMC based marginalization to obtain posterior probabilities
 * "BANFF": gradient descent

Anti-correlations between postfit flux and interaction uncertainties

7

Near detector analysis Reduction of uncertainties

Near detector fit shifts the nominal predictions at the far detector, and reduces the flux and cross-section uncertainties

Far detector analysis Energy reconstruction

Oscillation fits Overview

Marginalize (integrate) over the nuisance parameters
 Bayesian, frequentist and pseudo-frequentist (fixed Δχ² intervals) results

Oscillation fits Analysis comparisons

Despite their differences, the 3 fitters give consistent results for sensitivity
 Small differences in the results of data fits, found to be coming from the use of (p_{lep}, θ) or (E_{rec}, θ) shape information for appearance samples

Sensitivity assumes true NH, $\sin^2(2\theta_{13})=0.083$, $\delta=-1.601$, $\sin^2(\theta_{23})=0.528$, $\Delta m^2=2.509e-3$ Results of reactor experiments used to constrain $\sin^2(2\theta_{13})$

T2K Oscillation Analysis Simulated data studies

Look for possible biases by comparing sensitivities obtained when fitting our model to data generated with nominal and modified interaction models:

- Data driven (assign ND data/MC difference to 1 mode)
- Alternative models (form factors, 2p2h, nuclear model, ...)

Significant effect on sensitivity, in particular for Δm^2

T2K Oscillation Analysis Current results

Run 1-9 results:

- 1.49e21 (v-mode) POT
 + 1.63e21 (v-mode) POT
- Conservation of CP symmetry excluded at 2σ
- Compatible with maximal mixing
- Preference for normal hierarchy and second octant

Posterior probabilities

	sin²θ ₂₃ <0.5	sin ² 023>0.5	Sum
IH	0.017	0.071	0.089
NH	0.177	0.733	0.911
Sum	0.195	0.805	1

Reactor constraint: $sin^{2}(2\theta_{13})=0.083\pm0.0031$ (PDG2018)

Run 1-9 data Observed number of events

Observed in the run 1-9 data:

> excess of events in the neutrino mode sample targeting CC1 π events

Small deficit in the neutrino mode 1-ring muon-like sample

Sample	δ=-π/2 MC	δ=0 MC	δ=π/2 MC	δ=π MC	Observed
v-mode 1Re	74.46	62.26	50.59	62.78	75
v-mode 1Rµ	272.34	271.97	272.30	272.74	243
v-mode 1Re	17.15	19.57	21.75	19.33	15
ν-mode 1Rμ	139.47	139.12	139.47	139.82	140
ν-mode e-like CC1π	7.02	6.10	4.94	5.87	15

MC with $sin^{2}(\theta_{23})=0.528$, $\Delta m^{2}_{32}=2.509*10^{-3} \text{ eV}^{2}\text{c}^{-4}$, $sin^{2}(\theta_{13})=0.0219$, Normal hierarchy

Observed number of events Impact on δ_{CP}

Can see the impact of those differences with predictions by redoing the fit for δ_{CP} replacing every time the data from one sample by MC predictions

MC with $\sin^2(\theta_{23})=0.528$, $\Delta m^2_{32}=2.509*10^{-3} \text{ eV}^2\text{c}^{-4}$, $\sin^2(\theta_{13})=0.0212$, Normal hierarchy Reactor constraint: $\sin^2(2\theta_{13})=0.083\pm0.0031$ (PDG2018)

15

Observed number of events Likelihood of excess seen in CC1\pi sample

16

Probability to observe similar or larger excess in CC1 π sample for different true values of the oscillation parameters			
	T2K only best fit	T2K + reactor best fit	
e-like CC1π sample only	2.49 %	1.34 %	
With trial factor	11.3 %	5.8 %	

Mass hierarchy Significance of the results

- Significance of MH results not easy to determine (Wilks theorem does not apply, potential issues with p-values)
- T2K reports Bayesian results assuming equal prior probabilities for both hierarchies
- Data results also found to be slightly different depending on shape information used for the appearance samples

	Result shown in plenary talk		
	Analysis 1 (Ε _{rec} , θ)	Analysis 2 (E_{rec} , θ)	Analysis 3 (p _{lep,} θ)
Posterior probability for NH	0.877	0.889	0.911
Bayes factor P(NH)/P(IH)	7.13	8.00	10.23 T2K Run 1-9 preliminary

Jeffrey's scale: preference substantial (analysis 1 & 2) or strong (analysis 3) for the normal hierarchy

Mass hierarchy Effect of prior probabilities

- In Bayesian hypothesis testing, prior probabilities have a large impact on the result
- Checked how the posterior probabilities obtained in T2K data fit using reactor constraint varied with prior probabilities

Mass hierarchy Frequentist properties

- > Check how often we reject the true and false MH from the other ordering having posterior probability \ge 95%
- Found to be highly dependent on true value of δ assumed. Only for true δ around $-\pi/2$ can we expect to have an ordering with posterior probability $\geq 95\%$

Reject true hypothesis $\sim 6\%$ of the times we reject the false hypothesis ($\sim 0.2\%/2.8\%$). Broadly consistent with our interpretation of posterior probability

Mass hierarchy Frequentist version

Look at the fraction of the time we expect to have a Bayes factor more NHlike (=bigger) than in the data for the 2 mass hierarchy hypotheses

Both p-values are low => Misleading to claim exclusion of IH based only on the IH p-value

Mass hierarchy Relationship with standard test statistics

With equal prior probabilities \$\Delta\chi^2 = \chi^2_{NH} - \chi^2_{IH} = -2log(Bayes Factor)
 The two test statistics give the same frequentist results

(numbers indicate the fraction of the time we obtain a result more NH-like than in the data)

Result in preparation Comparison of v_u and \overline{v}_u oscillations

Last published in Phys. Rev. D 96, 011102(R) 2017

Updated result with improved sensitivity in preparation

Summary

- T2K oscillation analysis compares observation at the far detector to predictions to measure oscillation parameters and test hypothesis
- Predictions made using a model of the experiment, built from simulation and external data
- Near detector data allow to tune the predictions, and reduce the uncertainties
- > Additional procedure "Simulated data studies" to take into account additional uncertainties not covered by changes of the model parameters
- > Current T2K data exclude conservation of CP symmetry with 2σ significance, and a preference for normal hierarchy and the octant $\sin^2\theta_{23}$ >0.5

BACKUP

 $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ oscillates as a function of distance L traveled by the neutrino with periodicity $\Delta m^2_{ii}L/E$

 $(\Delta m_{ij}^2 = m_i^2 - m_j^2)$

Neutrino oscillations Parameters

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(c_{ij} = \cos(\theta_{ij}), s_{ij} = \sin(\theta_{ij}))$$

Neutrino oscillation Open questions

Violation of CP symmetry in neutrino oscillations?

Long-baseline experiments First measurements

In first approximation LBL experiments can measure some of the PMNS parameters through exclusive channels:

And similar measurements for anti-neutrinos

How can we measure δ ?

Full probability in vacuum:

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin^{2} \Delta_{31}$$

+ $8c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$
- $8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$
+ $4s_{12}^{2} c_{13}^{2} (c_{12}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta) \sin^{2} \Delta_{21}$

$$\begin{bmatrix} \nu \rightarrow \overline{\nu} \\ \delta \rightarrow -\delta \end{bmatrix}$$

 $\sin^2 \Delta_{ij} = \sin^2 (1.27 \Delta m_{ij}^2 \times L/E)$

Change in expected appearance probability (at first maximum) wrt δ =0 or π (~27% effect in T2K)

Oscillation	δ > 0	δ < 0
$\nu_{\mu} \rightarrow \nu_{e}$	Suppressed	Enhanced
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	Enhanced	Suppressed

The T2K experiment Neutrino production

Conventional neutrino beam produced from 30 GeV protons

Almost pure
$$v_{\mu}/\overline{v}_{\mu}$$
 beam,
with an intrinsic v_{e}/\overline{v}_{e}
component (<1% at peak)

Can switch from ν_{μ} beam to $\bar{\nu}_{\mu}$ beam by inverting the horn polarities

The T2K experiment Off-axis beam

- Narrow band neutrino beam, peaked at oscillation maximum (0.6 GeV)
- Reduces high energy tail
- Reduces intrinsic $\boldsymbol{\nu}_e$ contamination
 - of the beam at peak energy
- Interactions dominated by CCQE mode

The T2K experiment Near detectors

32

On-axis detector INGRID (Interactive Neutrino GRID) Located 280m from the target

The T2K experiment Off-axis near detectors

- Several detectors inside a 0.2 T magnetic field
- Good tracking capabilities
- 'Tracker' used to constrain flux and interaction uncertainties for oscillation analysis
- Rich cross-section
 measurement program

The T2K experiment Far detector: Super-Kamiokande

Located 295 km from the target Synchronized with beamline via GPS

- > 50 kt water Cherenkov detector
- > Operational since 1996

39.3 m

Good separation between μ^{\pm} and e^{\pm} (separate ν_{μ} and ν_{e} CC interactions)

v on an event by event basis

Neutrino interactions

Need to detect neutrino flavor => charged-current interactions
 At T2K energies, dominant interaction mode is charged-current quasi-elastic

Near detector fits Reduction of uncertainties

36

Near detector fit shifts the nominal predictions at the far detector, and reduces the flux and cross-section uncertainties

