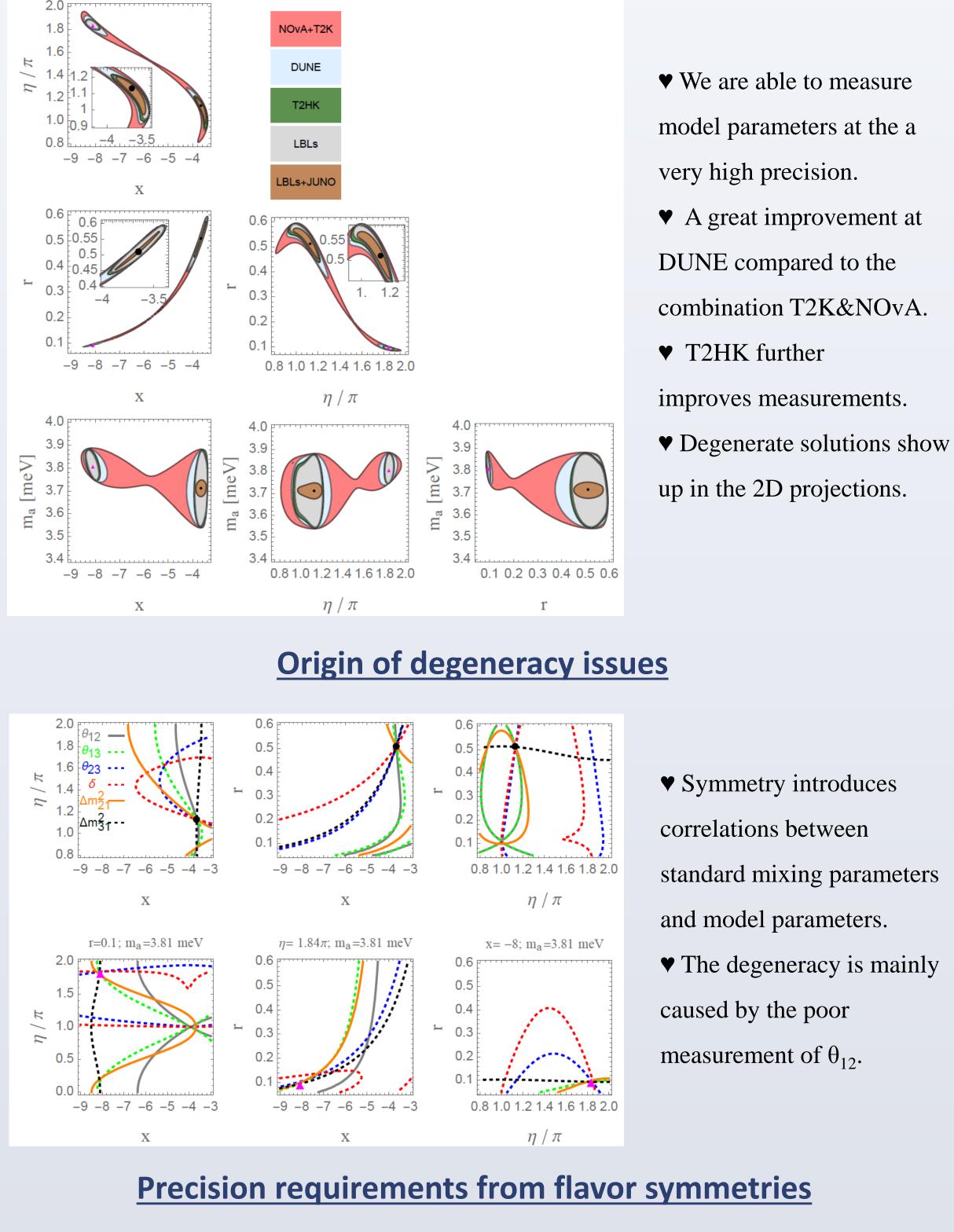


Test of tri-direct CP symmetry models by neutrino oscillations Jian Tang

School of Physics, Sun Yat-Sen University, Guangzhou 510275, China tangjian5@mail.sysu.edu.cn

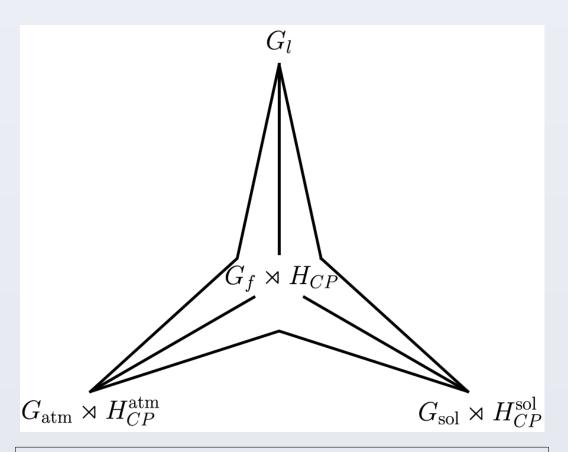
Motivations

- 1) It is important to extend the Standard Model to naturally generate tiny neutrino masses. Flavor symmetry helps to reduce the degrees of freedom.
- 2) How powerful is it to reach precision measurement of standard neutrino mixing parameters to test flavor-symmetry models?
- How can we implement the over-constrained mixing parameters predicted by the flavor-3) symmetry models?
- 4) Are there any new features like degeneracy issues and how to break degeneracies?
- Is it possible to check the sum rules predicted by models? 5)
- At which level are we able to exclude a class of flavor-symmetry models? 6)



Constrain model parameters

Review of tri-direct CP symmetry models



Sketch of the tri-direct CP approach for two right-handed neutrino models

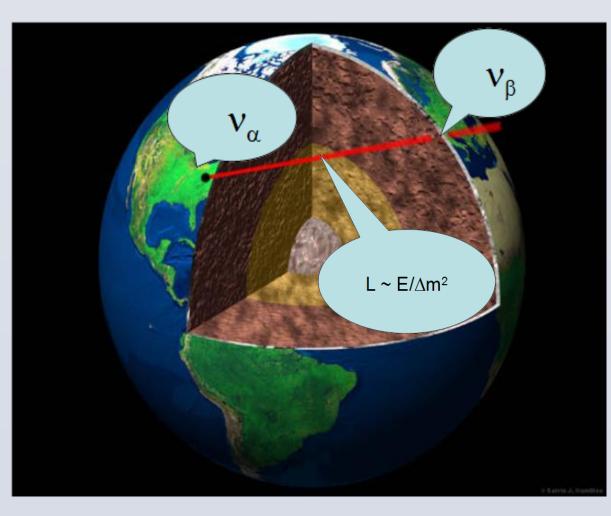
- The flavor group S4 and CP is broken to the subgroups. The residual symmetries are associated with the atmospheric and solar flavor sectors.
- The charged lepton mass matrix is diagonal.
- Structure of the neutrino and charged lepton mass matrices arise from the vacuum alignment of flavon fields which are fixed by the residual symmetry.
- Only four parameters m_a , m_s , η and x are involved to describe both neutrino masses and lepton mixing parameters.

$m_D =$	$\begin{pmatrix} y_a \ \omega y_a \ \omega^2 y_a \end{pmatrix}$	$\begin{pmatrix} y_s \\ xy_s \\ xy \end{pmatrix}$	$m_{\nu} = m_a$	$\begin{pmatrix} 1\\ \omega\\ \omega^2 \end{pmatrix}$	$\omega \ \omega^2 \ 1$	$\begin{pmatrix} \omega^2 \\ 1 \\ \omega \end{pmatrix}$	$+ e^{i\eta}m_s$	$\begin{pmatrix} 1 \\ x \\ x \end{pmatrix}$	$\begin{array}{c} x \\ x^2 \\ x^2 \end{array}$	$\begin{pmatrix} x \\ x^2 \\ x^2 \end{pmatrix}$
	$\sqrt{\omega^{-}y_{a}}$	xy_s		$\langle \omega^2 \rangle$	T	ω)		$\backslash x$	<i>x</i> -	x^2

Best-fit values based on the latest global fit NuFit4.0 with priors taken into account.

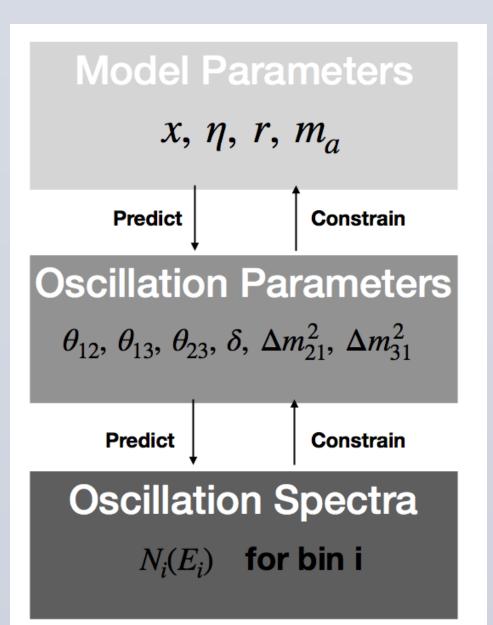
$\Delta \chi^2$	x = x	η/π	r	$m_a/~{ m meV}$	$\theta_{12}/^{\circ}$	$ heta_{13}/^{\circ}$	$ heta_{23}/^{\circ}$	$\delta/^{\circ}$	$\Delta m^2_{21}/10^{-5} {\rm eV^2}$	$\Delta m^2_{31}/10^{-3} {\rm eV}^2$
4.98	-3.65	1.13	0.511	3.71	35.25	8.63	46.98	278.96	7.39	2.525

Working principle of neutrino oscillations



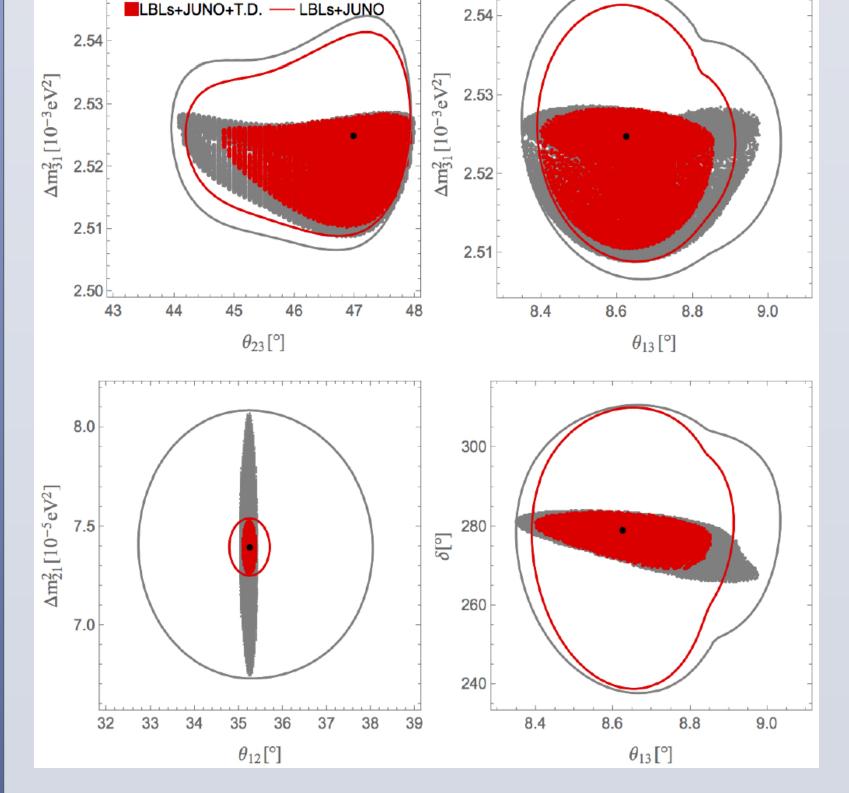
- high-energy protons hit the target station to produce charged mesons which can decay to generate neutrinos.
- 2) Near detector: flux measurements, cancellation of the systematic uncertainties...
- 3) Far detector: detection of oscillated neutrinos, reconstruction of oscillation probabilities, conduct physics analysis.
- 4) Running experiments: T2K, NOvA
- 5) Next generations: T2HK, DUNE, JUNO

Strategies to test the flavor-symmetry models



$$\overrightarrow{\mathcal{M}} = \{x, \eta, m_a, r\}$$
$$\chi^2(\overrightarrow{\mathcal{M}}) = \sum_{i=1}^N \frac{\left[\mu_i(\overrightarrow{\mathcal{O}}(\overrightarrow{\mathcal{M}})) - n_i\right]^2}{\sigma_i^2}$$

$$\overrightarrow{\mathcal{O}} = \{\theta_{12}, \theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^2, \Delta m_{31}^2\}$$
$$\chi^2(\overrightarrow{\mathcal{O}}) = \sum_{i=1}^N \frac{\left[\mu_i(\overrightarrow{\mathcal{O}}) - n_i\right]^2}{\sigma_i^2}$$



LBLs+T.D.

- LBLs

incorporate the model symmetry.

♥ Shaded regions

♥ JUNO is good at precision measurement of θ_{12} and might help to break degeneracies.

♥ Gray and red regions highlights the contribution by JUNO.

♥ Shape of contours in the projected parameter space can give us hints of the underlying theory.

References

- 1) I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, and T. Schwetz, JHEP 01, 106 (2019), 1811.05487.
- 2) G.-J. Ding, S. F. King, and C.-C. Li, JHEP 12, 003 (2018), 1807.07538.
- 3) G.-J. Ding, Y.-F. Li, J. Tang, and T.-C. Wang (2019), 1905.12939, to appear in PRD.
- 4) J. Tang and T.-C. Wang (2019), arXiv: 1907.01371,

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant No. 11505301 and No. 11881240247.

