Status and Plans of ICARUS T600

NuFACT2019
DaeGu, Korea
August 30, 2019
Jaehoon Yu
Department of Physics
University of Texas at Arlington

Outline

• Introduction
• ICARUS T600
• Physics Potential
• Status and Schedule of ICARUS
• Conclusions
Physics Motivation

• The neutrino sector in the Standard Model needs a fix, so
 – Precision measurements of the oscillation parameters
 • Mixing angles and mass hierarchy
 – Studying the CPV and precisely measuring the CP phase
 • Do neutrinos and anti-neutrinos oscillate the same way?

• These could lead to a new symmetry

• The question of the grand unification
 – Energy scale of the unification and nucleon decay

• Understanding neutrinos of astrophysical origin
 – Supernova, relic neutrinos, dark matter, etc

• And anomalous species of neutrinos (sterile?)
 – Low E_{ve} deficit anomaly \Rightarrow An indication of new neutrino species?

• These require high statistics samples
 – Large volume and highly capable (near and far!) detectors
 – High intensity neutrino beam facility
Fermilab SBN Campus

L/E$_\nu$ ~ 600 m / 700 MeV ~ σ(1 m/MeV)

T600 also off-axis on NUMI beam:
Asset for DUNE

ICARUS T600

FBAR DETECTOR:
T600 – 476 ton

Aug 30, 2019

Ready for data end of 2019

MicroBooNE
89 ton

Took data

SBND Under Construction

NEAR DETECTOR:
SBND – 112 ton

Aug 30, 2019

E$_\nu$ = 700 MeV

E$_p$ = 8 GeV

NUMI beam (approximate)
LAr Time Projection Chamber

• First proposed by C. Rubbia in 1977

• LAr-TPCs:
 – Ideal detectors for neutrino physics and nucleon decay:
 – 3D reconstruction with high (mm3) spatial granularity.
 – Homogeneous, full-sampling calorimetry possible
 – Scintillation light for fast signals for timing/triggering.
 – Electrons drift for several meters in high purity LAr
 – LAr dense and low cost → large masses (kt) possible
ICARUS T600 – LNGS Era

- Large scale LAr TPC in two separate volumes (T300+T300) constructed and ran three years in LNGS (2010 – 2013)
- Expected performance observed in CNGS beam and cosmic rays
- Proved the maturity of the technology for large scale experiments
- ICARUS T600 refurbished in 2015 – 2017 at CERN and moved to Fermilab summer 2017
ICARUS LNGS Performance – I

- High LAr purity $\Rightarrow \tau_e > 7\text{ms}$ for whole run
 - Impurity concentration <40ppt
 - Clear demonstration of large scale potential
 - JINST 9 P12006 (2014)

- Excellent spatial and energy resolution
 - Accurate dE/dx measurement w/ fine sampling 0.02X_0
 - PID from dE/dx vs range
 - AHEP 260820 (2013)

- Escaping P_μ multiple Coulomb scattering
 - 15% resolution on stopping muons
 - JINST 12P04010

Aug. 30, 2019
\(\nu_e \) CC event separation from NC background with \(\pi^0 \) (\(\gamma \)-initiated showers): crucial for oscillation physics.

- LAr-TPC provides 3 handles:
 - Visual identification of \(\gamma \) conversion gap.
 - Reconstruction of \(\pi^0 \) invariant mass.
 - \(dE/dx \): calorimetric accuracy and fine sampling (0.02 \(X_0 \)) allow measuring \(dE/dx \) on each wire: single MIP corresponds to an electron.

High E \(\nu_e \) CC interaction at CNGS

Clear depiction of e shower evolution single mip \(\rightarrow \) shower
ICARUS searched for sterile ν oscillations through ν_e appearance in the CNGS beam.
- L/E ~ 36 km/GeV, far from LSND value ~ 1 km/GeV
 \Rightarrow “sterile-like” oscillation was averaged out, canceling energy dependence.
- 7.9x10^{19} pots analyzed (~2650 ν interactions).
 - Expected ~ 8.5 \pm 1.1 ν_e bck events in the absence of anomaly (intrinsic beam ν_e dominant)
- Estimated ν_e ID efficiency ~74%
 - Negligible background from mis-ID
 - 7 events observed \Rightarrow no evidence of oscillation.
 - Most of LSND allowed region excluded – except for small area around $\sin^22\theta$ ~0.005, Δm^2~1 eV^2
 - Similar result by OPERA with the same CNGS beam and different detection technique.

Aug. 30, 2019

ICARUS Sterile Neutrino Search @ SBN

- SBN experiments can provide a definitive clarification on sterile neutrinos through both ν_e appearance and ν_μ disappearance
 - Some “anomalies” from accelerators (LSND), reactor, neutrino sources, point out to flavor transitions in the $\Delta m^2 \sim 1$ eV2 range
 - However, no evidence of oscillations in ν_μ disappearance data (MINOS, IceCube)
 - The 3 SBN experiments w/ the same technology will reduce systematic uncertainties

- Excellent ν_e ID efficiency \Rightarrow reduced NC background
- ICARUS at $\sim 8^\circ$ off-axis of the NuMI (Neutrinos Main Injector) \Rightarrow LDM search and other opportunities

Aug. 30, 2019
ICARUS T600 @ FNAL

• Detector on the surface ➔ large cosmic ray rates (11kHz)
 – Identification of $O(10^6)\nu$ interactions becomes a challenge
• Extensive overhaul at CERN in 2015 – 2017 period
• Several technology improvements were introduced, maintaining the already achieved performance at LNGS run:
 – new cold vessels, with a purely passive insulation;
 – renovated LAr cryogenics/purification equipment;
 – improvement of the cathode planarity;
 – upgrade of the PMT system: higher granularity and ns time resolution;
 – new faster, higher-performance read-out electronics.
• 3 m concrete overburden to reduce charged hadrons/\gamma’s intake
• Cosmic ray tagger to correlate residual μ with TPC signals.
Light Collection System Upgrade

• In a surface operation, the light collection system will:
 – Generate a trigger signal
 – Precisely ID the t_0 of interactions in the TPC
 – Determine rough event topology rapidly

• ICARUS@SBN employs 90 PMTs per TPC (5% coverage, 15 pe/MeV) that provides:
 – Sensitivity to low E events (~ 100 MeV)
 – Good spatial resolution (≤ 50 cm)
 – \approx ns timing resolution
 – ID of cosmics via PMT space/time pattern

• Timing/gain equalization w/ laser pulses ($\lambda = 405$ nm, FWHM < 100 ps, $P_{\text{peak}} \sim 400$ mW)
ICARUS PMTs

• All PMT’s tested at room temperature in a dark room at CERN
 – A subset of 60 PMTs tested in LAr for performance comparisons
 – All PMT’s illuminated with laser pulses

• Each PMT characterized at 300K and 87K for gain, dark count rate, peak to valley ratio and the uniformity of the photocathode response
 – The gain reduction at 87K wrt 300K can be compensated by a ~ 150V increase in PS voltage

JINST 13, P10030 (2018)
TPC Readout Electronics Upgrade

- New TPC readout electronics
 - Reside outside the cryostat → accessible
 - Serial 12-bit ADC, fully synchronous
 - CAEN A2795 64-chan modules
 - More compact layout: both analog+digital electronics in a single flange
 - Extensively tested on a 50ℓ TPC @ CERN

- Lower noise ~ 1200 e⁻ equivalent (~20% S/N improvement w.r.t. LNGS)

- Shorter shaping time (~ 1.5 μs all planes) and drastic reduction of undershoot after large signal.

- Induction plane 2 signal keeps bipolar shape → allows calorimetric measurement in this plane, to improve νₑ ID efficiency by ~20%.
ICARUS In Its Home at FNAL

The 2nd T300 being Inserted

Various top infrastructure installed

Electronics Installed

Remaining roof infrastructure installed
Finishing the Installation

- Top cold shields and top CRT support installation in progress
- Installation of proximity cryogenics completed.
- Leak tightness tests completed.
- Vacuum phase began June 5th!
- Side CRT installation ongoing
Recent Readout Electronics Test

- All FT flanges and the mini-crates w/ the TPC read-out electronics (576 channels + optical links) installed
- Full readout chain tested in April/May 2019 for all mini-crates:
 - Check readout continuity and set baseline for noise monitoring
 - Measured noise on random triggers and test pulses
 - Noise RMS ~1700 e⁻, not too far from ~1200 e⁻ measured in CERN 50-liter setup
 - Grounding conditions still far from optimal
- The successful tests demonstrate good performance of the full electronics

![Example of test pulse signal](image)
The Cosmic Ray Tagger (CRT)

- Surrounds the cryostat with two layers of plastic scintillators: 1100 m²
- Tags incident cosmic or beam-induced muons with high efficiency (>95%)
- Provides spatial and timing coordinates of the track entry point
- Reconstructed CRT hits matched to activities in the TPC
- Few ns time resolution allows measuring direction of incoming/outgoing particle propagation via time of flight

Top: ~ 400 m² roof + angled parts
- Will catch ~80% cosmic
- 2 strip layers (X+Y)
- SiPM readout

Middle: ~ 500 m² 4 sides
- Old MINOS veto modules
- Parallel strips
- SiPM readout

Bottom: ~ 200 m²
- Already installed
- D-Chooz veto modules
- 2 parallel layers
- PMT readout
Preparation for SBN Analyses

- Understanding of detector systematics and their correlation across ND – FD essential for SBN
- Common reconstruction tools and oscillation analysis fundamental.
- ICARUS sharing of algorithms and tools and x-check between reconstruction approaches.
- Full simulation performed with realistic geometry and signals from all sub-detectors (TPC, PMT, CRT).

![Graphs showing angle between simulated/reconstructed direction of EM shower in TPC and deconvolution hit finding.](image)
ICARUS @ FNAL Plans

- TPC/TRG electronics and PMT electronics installation to be completed and tested by summer 2019
- After cryogenics commissioning, cool down and filling
- ICARUS T600 should be full and operational in Q4 of 2019
- Commissioning of CRT, DAQ, trigger and slow controls will follow.
- Commissioning with cosmics and neutrino beam to begin by the end of this year.

We are here!
Conclusions!

- The successful 3-year run of ICARUS-T600 at LNGS a clear proof of the maturity of LAr-TPC technology for large-scale ν experiments.
- ICARUS significantly constrained the allowed phase space for LSND-like anomaly via ν_e appearance in the CNGS beam.
- The SBN project at FNAL to clarify the sterile ν puzzle through both appearance and disappearance channels with 3 LAr-TPCs.
- After an extensive overhaul, ICARUS at final stage of installation as the SBN FD at FNAL \Rightarrow SBN data taking expected in early 2020 followed by ND in 2021.
- ICARUS will see the first neutrinos early 2020!
The ICARUS (Imaging Cosmic And Rare Underground Signals) Collaboration at SBN

• The full list of the Collaboration https://icarus.fnal.gov/collaboration

Spokesperson: C. Rubbia, INFN GSSI
more than 90 collaboration members

International Partner

Many thanks for the major contributions to the Far Detector cryogenics and cosmic ray tagger from our partners at CERN, INFN-Bologna, INFN-Lecce, INFN-Milano, INFN-Napoli, INFN-Genoa, INFN-LNS.