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B Summary



Prompt neutrinos

m |n pp collision at the LHC, various hadrons are produced.

m A number of neutrinos are produced from subsequent decay of the
secondary hadrons.

e.g) n, K, D,B... >v+X

m Neutrinos generated from the decay of charmed/bottom hadrons are
called prompt neutrinos.
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Possible sites for detection
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Ref:1903.06564 (CMS note)
1901.04468 (FASER)

m Near CMS interaction point (IP)
- 25 m from IP (quadruplet region)
- 90 &120 m from IP (UJ53 & UJ57)

- 240 m from IP (PR53 and PR57)

m Near ATLAS IP
o 480 m from IP (TI18 and TI12)




FASER (ForwArd Search ExpeRiment)

m Detector Location: 480 m from ATLAS IP

m Planned with two stages
FASER 1: Ry =10 cm, Lg = 1.5 m, Luminosity = 150 fb-1 (during Run 3)
FASER 2: Rqg=1.0 m, Lg=5.0 m, Luminosity = 3000 fb-! (during HL-LHC)

B Rapidity: n = 9.2 for FASER1, n = 6.9 for FASER2
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Neutrino sources at the LHC

m 7, K (ct ~0(1) m): do not decay before they reach to the detector
at distance of 480 m when E = ~ 9 (65) GeV for  (K).

m W/Z : neutrinos from weak boson decays are distributed in Inl = 6.

® D/B mesons (ct ~ 0(100) um) ——

m A, (ct~0(10) um)

m v, are only from B*, BY(BY).

the main source of v/,

m Previous works for tau neutrinos at LHC
De Rujula et al. Nucl. Phys. B405(1993) 80-108
H. K. Park, JHEP 10 (2011) 092

m FASERv (1908.02310)
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Motivation

m Neutrinos in large rapidity region will provide a good opportunity for
measurement of neutrino cross section at TeV energies.

B With sizeable number of tau neutrino (v,), it will be possible to test
lepton universality in neutrino interaction.

® Abundant v_ will help investigate oscillation in/beyond the SM.

better understanding of v, CC interaction will be able to reduce the
uncertainty due to the tau (7) decay in the oscillation experiments.

possible to probe oscillation between v and sterile neutrino (v,) using
the event spectrum.

m [0 better understand heavy quark production at more forward region

than measured by LHCb = useful to explore high energy neutrinos
at IceCube and Km3net.



Heavy quark production

m Perturbative QCD with collinear approximation

- The HQ production cross section (at NLO):

d36l-j(x1 Pps X2Pp Po» mé, UEs UR)
dp})

d*c
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Q i7j=q9Q’g B

m In collinear approximation, the partons in interaction are assumed to
be collinear.

m For very forward kinematic region, small transverse momentum
corrections can have important effect on particle’s path to the detector.

= k- smearing needs to be incorporated.



Transverse momentum smearing

m |In Gaussian approximation of transverse momentum smearing

1 k+
i)\ )

B The heavy quark production cross section with (k) included:

f (kT) —

dox fxy, i) — dxy dszl i (le)fi(xp/h%)

d’6 ,
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d*c
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= ) szkTJde'T flkr)—
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m Transverse momentum smearing:

-~ approximate effects of initial state showering
- Includes intrinsic k;



The effect of (k) by rapidity
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m (k;) has more impact at larger
rapidity region.

m (k) reduces the amount of the
particle toward the detector direction.
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m By comparing NLO pQCD
evaluation with the LHCDb data
for the total and differential cross
sections, the relevant scales is
obtained as

(s i) = (1.0, 1.5) m.

® Non-zero (k;) makes fit better to
the measurement.

B (k) =2.2GeV fairly well
describes the overall data, but
still not optimal for low p; range.
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Determination of (k)
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m The default value: (k;) =0.7 GeV guided by POWHEG simulation.

® The uncertainty range by the scales is too broad at the low p; region.
Instead, we take 0 < (k;) < 1.4 GeV.



Decay to tau neutrinos

m The Ds meson is the main source of the tau neutrinos with
Br(D,—-74+v,)~55%.

B The Ds decay produces two tau neutrinos: by direct decay (Ds — v-)
and by chain decay (Ds = 7 = v1).

m About 90% of Ds energy is transferred to tau. \

m B0, B* also decays to tau neutrinos.

Br (Bt —» D*v)=0.7% Br(B' - D ttv) = 1.08 %
Br(B* — D*(2007)°z*y,) = 1.88%  Br(B” — D*(2010)"z"v,) = 1.57 %



Differential cross sections for . production
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do
n T X & . total flux of neutrinos incoming to the detector area.

m 3-dimensional decay are considered.



Collinear approx. vs. 3-dim in decay
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m 3D decay consideration reduce the number of tau neutrinos reached to
the detector by ~ 20%.



Event rate
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m Contribution from B is ~ 4 %.

m Events with (k;)=2.2 GeV is
5725, which is ~ 20% less than
prediction with (k;) = 0.7 GeV.



Oscillation with sterile neutrinos



Sterile neutrinos at FASER

m Sterile neutrinos are searched in a wide mass range depending on
motivations.

m Oscillation experiments search for mostly eV scale sterile neutrinos
and the mixing angles are constrained for Am}, ~ 0(107%) — 10eV?

m With the abundant tau neutrinos and broad energy spectrum, the
FASER can investigate oscillation between v_and v..

For the baseline and the neutrino energy range, FASER will not be
sensitive to oscillation between the SM neutrinos. Therefore, deficit or
excess in the observed event spectrum can be interpreted as oscillation

with sterile neutrinos.

The larger mass range of sterile neutrinos can be probed.



Potential mass and mixing

m Oscillation probability in two flavour approximation:

P( ) 250 ( Am’L )
V, = Upg) = sin sin
g “ AE

m Condition for noticeable signal :

Am*L 1

N —

4F 2

m For the baseline 480 m and neutrinos with

- E~170 GeV = Am? ~ 440 eV? (m, ~ 20 eV)
- E~350 GeV = Am? ~ 900 eV? (m, ~ 30 eV)



Potential mass and mixing

m Among the existing constraints on
Am? > 100 eV?, the strongest constraint
is from NOMAD as 2
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Oscillation probability in the 3+1 model

m The oscillation probability in two flavour approximation
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m Probability of appearance is much less than disappearance, but due to
the large flux of muon/electron neutrinos it could affect the spectrum.
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Event spectrum of v_ (disappearance)
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Event spectrum of v/_
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m All neutrinos here are prompt neutrinos.

2 2 — 2
Representative ~ Am?=20eV? [Ual” =004 U7 =10 5, Uy l” =0.08
parameter sets &30 eV?, |Uul>=0.02, [Uyl*=5-107% |Uyl*> =0.15



Summary

m We have investigated tau neutrinos that could be measured at very forward
detector, focusing on the 2nd stage of the FASER experiment with total
luminosity <. . = 3,000 fb™!.

m The expected tau neutrino events are about 7-8000 and their energy scale
will be in O(100) GeV - O(1) TeV.

m The FASER will be an opportunity for the first detection of neutrino from a
collider and the highest energy neutrinos from the laboratory accelerator
experiments.

m With abundant tau neutrinos, their detection will contribute to the precise
study of tau neutrino interaction including TeV scale and the heavy flavour
production in the forward region.

m The FASER will also make it possible to explore the larger mass sterile
neutrino (Am? > 100 eV?) than usually probed by oscillation experiments.



