

Outline

- Basics
- Physics Goals
- Detector Design & Status
- Timeline
- Summary & Conclusions

Reactor Neutrino Refresher

Nuclear reactors are a bountiful and well-understood source of electron antineutrinos

Beta decay: $n \rightarrow p + e^- + \overline{\nu}_e$

The primary detection channel is the inverse beta decay (IBD) reaction

IBD: $\overline{\nu}_e + p \rightarrow e^+ + n$

JUNO Basics

 The Jiangmen Underground Neutrino Observatory (JUNO) is a large experiment under construction in China:

- 53 km from two major nuclear power plants (10 reactors)
- 35 m diameter sphere with 20 ktons of liquid scintillator

LS Detectors	Daya Bay	Borexino	KamLAND	JUNO
Target Mass	20 t x 8	300 t	1 kt	20 kt

A Multipurpose Neutrino Observatory Atmospheric v's Supernova v's several/day $\sim 10^4 \text{ in } 10 \text{ s}$ for 10 kpc Solar v's (10-1000)/day700 m Cosmic muons ~ 250k/day 0.003 Hz/m², 215 GeV 10% multiple-muon 36 GWth, 53 km Geo-v's reactor v's 1-2/day ~ 80/day

Oscillation Physics with Reactor Ve's

$$P_{\overline{v_e} \to \overline{v_e}} = 1 - \left[\sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} \right]$$

$$- \sin^2 2\theta_{13} \cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} - \sin^2 2\theta_{13} \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}$$

- Determination of the neutrino mass ordering (NMO)
 - Exploit interference effects in the fine structure of the oscillated spectrum
 - $> 3\sigma$ sensitivity within 6 years
- Measurement of $\sin^2 2\theta_{12}$, Δm^2_{21} and Δm^2_{31} to better than 0.7%
 - New era of precision for model building and U_{PMNS} unitarity tests (~1%)

J. Phys. G43:030401 (2016)

Supernova Neutrinos

- Able to determine flavor content, energy spectrum and time evolution of SN burst neutrinos
 - 10⁴ detected events (5000 IBDs) for SN@10kpc
 - Low threshold ~0.2 MeV
 - Complementary to other detectors and with unique contributions (e.g. v_x from v-p ES channel)
- Also sensitive to diffuse SN neutrino background (DSNB)
 - Expected detection significance of ~3σ after 10 years of data
 - Provide leading constraint if DSNB is not observed

J. Phys. G43:030401 (2016)

Solar and Atmospheric Neutrinos

Atmospheric neutrinos:

- Independent measurement of NMO
 via matter effect
 - Complementary information to that from other experiments (e.g. IceCube)
- Also sensitive to θ_{23} (precision ~6°)

Solar neutrinos:

- Measure ⁷Be & ⁸B fluxes
 - Challenge: cosmogenic & radiogenic backgrounds
 - Planning solar phase with 10⁻¹⁷ g/g
- Explore current tension in Δm²₂₁
 between solar and reactor
 measurements with same detector
- Shed light on metallicity problem (low vs. high Z versions of the solar model)

Geoneutrinos and Nucleon Decay

- 400-500 geoneutrinos per year
 - Precision of ~13% in 1 year and ~5% in 10 years
 - Local crust model under development by interdisciplinary team
- Competitive sensitivity to proton decay searches, particularly in the $p \rightarrow \overline{v} + K^+$ channel
 - Exploit <u>triple</u> coincidence enabled by liquid scintillator

Detector Concept

- Keys to fulfilling the physics goals:
 - Optimal baseline
 - High statistics
 - Superb energy resolution

- Excellent control of energy response systematics
- Background reduction

How to accomplish this:

Similar concept
to previous LS
experiments, but
much LARGER
and MORE
PRECISE

Energy resolution

 With 3% @ 1 MeV, JUNO will be the LS detector with the best energy resolution in history

- Most obvious (although not unique) requirement for achieving this resolution: seeing enough photons
 - There is no approach that can singlehandedly provide all the light needed. Have to attack the problem from different angles:

	KamLAND	JUNO	Relative Gain 1	KamLAND← used for comparison
Total light level	250 p.e. / MeV	1200 p.e. / MeV	5 ←	— goal
Photocathode coverage	34%	75%	~2	
Light yield	1.5 g/l PPO	3-5 g/l PPO	~1.5	
Attenuation length / Ø	15 m / 16 m	20 m / 35 m	~0.8	
PMT QE×CE	20%×60% ~ 12%	~30%	~2	1

Large PMT system

JUNO will use large 20-inch PMTs as its main light-detection device

Arranged as tightly as possible, with a photocathode coverage of ~75%

2 complementary (and new!) technologies:

- Developed for/by JUNO
- Use of transmission + reflection cathodes to increase QE
- Good price
- Mass-produced by NNVT (China)

- R12860 from Hamamatsu
- New type of bialkali photocathode
- Excellent TTS (2.7 ns FWHM)

Both reach QE x CE ~ 30%!

JUNO's central detector will use 13,000 MCP-PMTs and 5,000 Dynode-PMTs

Large PMT system

We have already received all dynode PMTs and over 10,000 MCP PMTs:

Have a very large storage, testing and potting facility near the JUNO site

potting facility near the JUNO site

Acceptance & characterization tests ongoing at full speed

Photocathode uniformity scanning system

An industrial process!

Liquid Scintillator

 Using a recipe inspired from Daya Bay's experience

Since early 2017 one of the eight Daya Bay detectors was taken down permanently and its Gd-LS replaced with JUNO LS

Invaluable experience to study different recipes and purification methods

- No doping, large fluor concentration, Al₂O₃ column purification, vacuum distillation.

Calibration System

 Achieving a light level of 1200 p.e. / MeV is not enough. Also have to keep the systematics under control

- Have an aggressive calibration program consisting of 4 complementary systems:
 - 1D: Automated Calibration Unit (ACU) deploys radioactive and laser (1ns, keV-TeV range) sources along the central axis
 - **2D**: Cable Loop System (CLS) to scan vertical planes
 - **2D**: Guide Tube to scan the outer surface of the central detector (where the CLS cannot reach)
 - **3D**: Remotely Operated Vehicle (ROV) operating inside the LS to scan the full volume

Small PMT System

- JUNO will also have to keep the nonstochastic term of the resolution under control (≤1%)
- 25,000 3-inch PMTs will operate predominantly in photon-counting mode:

Basic principle: look at the same events with two sets of "eyes" that have different systematics (e.g. nonlinearity)

- The small PMTs also bring other nice benefits to the table:
 - Independent physics (e.g. measurement of solar parameters)
 - Aid to position reconstruction and muon track reconstruction
 - Aid to supernova neutrino measurement
 - Others (a little extra light, larger dynamic range... etc).

< 1% never áchieved before!

XP72B22

A custom design for JUNO!

Muon Veto System

- It is also important to keep the cosmogenic backgrounds under control
- The 35 m diameter LS acrylic sphere will be immersed in a cylindrical instrumented water pool:
 - 35 kton ultrapure water with a circulation system

Shield central detector against radioactivity from rock and neutrons from cosmic rays

Doublepurpose:

Veto cosmic-ray muons (most backgrounds are of cosmic ray origin)

- Some details about the muon veto:
 - About 2,000 20-inch PMTs
 - Detection efficiency expected to be > 95%

Muon Veto System

- The muon veto system will also have a top tracker:
- 3-layers of plastic scintillators
- Reuse of OPERA's target tracker

- Only partial coverage
- There will also be a magnetic field (EMF) shielding system
- Double coil system

JUNO-TAO

- JUNO will also deploy a satellite detector called TAO (Taishan Antineutrino Observatory)
 - ~35 m from a 4.6 GW_{th} reactor
 - 1 ton fiducial Gd-LS volume
 - SiPM and Gd-LS at -50°C
 - < 2% @ 1 MeV energy resolution

Main goal: measure the reactor antineutrino spectrum with unprecedented resolution

- See fine structure due to Coulomb corrections
- Serve as benchmark for JUNO, other experiments, and nuclear databases
- Search for sterile neutrinos
- Study flux and shape change with fuel evolution & decompose isotope spectra
- Discover something?

R&D well underway and prototype under development

Civil Construction

- A new underground laboratory with a 700 m overburden and infrastructure at the surface is under construction since late 2014
- Expect to finish by summer 2020

Vertical shaft

Slope Tunnel

Timeline

Summary & Conclusions

- JUNO is a multipurpose neutrino observatory with a rich program in neutrino physics and astrophysics
 - Neutrino mass ordering, oscillation parameters, supernova v's, solar v's, atmospheric v's, geo-v's, proton decay, and others.
- JUNO is pushing the limits in liquid scintillator detection technology
 - New solutions in terms of PMT technology, liquid scintillator properties and detector construction
 - Developing some unique approaches to calibration and to the reduction of systematic uncertainties
- Progress is well underway, and expect to complete the construction of the detector by 2021
- Anticipate some exciting results (and maybe some surprises?)

Stay tuned!

The JUNO
Collaboration:
77 institutions
from over 15
countries

Thank you for your attention!

