

Before MiniBooNE: The LSND Anomaly

Stopped π beam

- appearance of $\bar{\nu}_e$ in a $\bar{\nu}_\mu$ beam $\bar{\nu}_e$ signature : Cherenkov light from e⁺ with delayed n-capture
- Excess = $87.9 \pm 22.4 \pm 6 (3.8\sigma)$

Phys.Rev.D 64.112007

Before MiniBooNE: The LSND Anomaly

Stopped π beam

- appearance of $\bar{\nu}_e$ in a $\bar{\nu}_\mu$ beam $\bar{\nu}_e$ signature : Cherenkov light from e⁺ with delayed n-capture
- Excess = $87.9 \pm 22.4 \pm 6 (3.8\sigma)$

Phys.Rev.D 64.112007

The MiniBooNE Experiment

- Proposed to investigate the LSND anomaly, in search for sterile neutrinos
- Located on the Booster Neutrino Beam at Fermilab
- Single horn focused neutrino beam : Selection of neutrino/antineutrino modes
- Similar L/E as LSND:
 - MiniBooNE ~500 m / ~500 MeV
 - LSND ~30 m / ~ 30 MeV
- Different systematics due to different fluxes, event signatures and backgrounds

The MiniBooNE Detector

- ø12.2 m sphere, ø10m fiducial volume
- 800 tons of mineral oil, 450 tons fiducial mass
- 2 optically isolated volumes
- 1280 inner PMTs, 240 veto PMTs
- Very well understood detector
 - 2% change of the energy scale over 15 years of running
 - Measurements of cross sections for most of the neutrino and anti-neutrino processes

Events in MiniBooNE

- Background reduction using beam timing and hit topology
- Use primarily Cherenkov light
- ID based on ratio of fit likelihoods under different particle hypotheses
- Only sensitive to particles above the Cherenkov threshold
 no proton detection
- Cannot distinguish single photon from single electron

Energy Reconstruction

- Energy reconstructed using only the lepton kinematics derived from the Cherenkov cone
- Energy is reconstructed under the CCQE assumption
- Assumes CCQE interaction on a nucleon at rest, accounts for nuclear binding energy

$$E_{\nu}^{\text{QE}} = \frac{2(M_n - E_B)E_{\ell} - ((M_n - E_B)^2 + M_{\ell}^2 - M_p^2)}{2((M_n - E_B) - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

Data Taking

- 15+ years of data taking with a very stable and robust detector
- New result published in 2018 doubles the statistics in neutrino mode (PRL 121,221801 (2018))
- Improved data-driven background constraints

Other analyses: DM search in beam dump mode

- First dedicated search for direct detection of accelerator-produced dark matter in a proton beamline
- Beam-dump mode reduced the v flux by ~50
- The goal was to test vector portal model interpretation of g-2 (ruled out)
- At time of publication: set world leading limits in the vector portal dark matter model with a dark matter mass between 0.01 and 0.3 GeV

Other analyses: KDAR

- Kaon Decay At Rest
- KDAR neutrinos from the NuMI beam line absorber have been identified based on energy reconstruction and timing
- First measurement of ω (energy transfer to the nucleus) with a known energy, weak interaction-only, nuclear probe

• Results provide a standard candle for understanding v_{μ} CC events at a known energy (236 MeV)

ve-Like Excess

- Old+new dataset in neutrino mode
- Neutrino mode v_e excess of 4.5σ
- Main backgrounds are related to separating
 γ and e⁻

Constraining Backgrounds

ve-Like Excess consistency

- Comparing the data-prediction excess for two data sets in neutrino mode
- Comparable statistics between:
 - 2009 data release in neutrino mode
 - 2018 data release in neutrino mode
- The observed excess remains well compatible between the two data sets

Preferred regions in a (3+1)v interpretation

MiniBooNE's lines

Neutrino + Anti-Neutrino Mode

$$(\Delta m^2, \sin^2 2\theta) = (0.041 \text{ eV}^2, 0.918)$$

 $\chi^2/ndf = 19.4/15.6 \text{ (prob} = 21.1\%)$

- Neutrino mode excess 4.5σ,
- Neutrino+Anti-neutrino modes excess 4.8σ
- Combined LSND and MiniBooNE significance of 6.10
- Similar agreement of neutrino and anti-neutrino data to (3+1)v fit

Preferred regions in a (3+1)v interpretation

MiniBooNE: take away

- MiniBooNE observes a low energy v_e -like excess with a significance of 4.8σ , compatible with the LSND excess
- Combines MiniBooNE+LSND significance of 6.1σ
- Not a perfect fit to a (3+1)ν model (large best fit value of sin²2θ seems unphysical)
- Very stable detector over 15 years, well constrained backgrounds, from *in situ* measurements
- Excess seems real, needs a satisfactory explanation

MiniBooNE in the global picture

 v_e appearance, v_e disappearance, and v_μ disappearance are interlinked by these three probabilities:

$$P_{\nu_e \to \nu_e} = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_e} = 4|U_{\mu 4}|^2|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_\mu} = 1 - 4(1 - |U_{\mu 4}|^2)|U_{\mu 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

- We see signals in the ν_e appearance and disappearance, somewhat compatible, but not in the ν_μ disappearance
- The (3+1) model implies that we also see a signal in the ν_{μ} disappearance mode
- The (3+1) model alone seems insufficient
- Does MiniBooNE have a sterile signal + a systematics that could lead to a mis-estimation of the appearance excess?
- Are all appearance signals from backgrounds?

see arXiv:1906.00045 [hep-ex] for more details

SBN program

- Same beam line as MiniBooNE
- Three detectors on axis
- Same technology: Liquid Argon Time Projection Chamber (LArTPC)
 => Flux and cross-section systematics constraint, some detector systematics.
- High precision flux measurement
- High precision oscillation measurement

- Production of TPC components in UK and US complete
- Successful alignment, coupling, and QC of first two anode planes
- TPC assembly transport plane under construction at FNAL
- Cryogenics platform, valve box, and proximity cryogenics installation completing this month
- Warm cryostat construction at CERN underway

See the talk from <u>Stephen Robert Dennis</u> on Friday

ICARUS

- Previously at Gran Sasso, shown feasibility of large scale LArTPC
- Significant upgrades and refurbishment at CERN in 2015-2017
- New Cosmic Ray Tagger
- Transported to FNAL, arrived in August 2017, installation ongoing
- Commissioning will start this fall and expect first neutrino data within a year

See the talk from <u>Jaehoon Yu</u> on Friday

SBN Near Detector

SBNI

LArTPC technology:

SBN Far Detector

ICARUS

- γ/e- separation
- Position and topology
- low detection threshold

MiniBooNE

- Data taking since October 2015: longest running LArTPC
- Smooth operation with 96% detector & DAQ uptime

MicroBooNE

- 13.4 10²⁰ POT on tape to date
- Surface operation: Cosmic Ray Tagger used to understand/reduce cosmic background (1/2 of data-taking period)

"Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC", JINST 12, P08003 (2017)

"Ionization Electron Signal Processing in Single Phase LArTPCs" Parts I & II, JINST 13, P07006 (2018) & JINST 13, P07007 (2018)

32 PMT

LArTPC Energy Reconstruction

- Calorimetric reconstruction => charge clustered in each track
- Access kinematics of all the particles above O(10 MeV)
- Assumes CCQE interaction on a nucleon at rest, accounts for nuclear binding energy

LArTPC Energy Reconstruction

- Calorimetric reconstruction => charge clustered in each track
- Access kinematics of all the particles above O(10 MeV)
- Assumes CCQE interaction on a nucleon at rest, accounts for nuclear binding energy

LArTPC Energy Reconstruction

- Calorimetric reconstruction => charge clustered in each track
- Access kinematics of all the particles above O(10 MeV)
- Assumes CCQE interaction on a nucleon at rest, accounts for nuclear binding energy

Studying Detector Physics

arXiv:1907.11736 [physics.ins-det]

- Major calibration campaign completed
- Use through-going muons and stopping muons as standard candles
 - uniformity in position and time
 - ADC to e-/cm calibration
 - E field distortions due to charge accumulation
- Use protons to correct for recombination
 - e-/cm to MeV/cm calibration
- Use UV-laser runs
 - E field distortions due to charge accumulation

Studying Neutrino Interactions

BNB:

- ν_μ CC inclusive arXiv:1905.09694[hep-ex], accepted to PRL
- ν_μ CC π⁰ PRD 99,091102(R) (2019)
- Track multiplicity
 Eur. Phys. J. C (2019) 79: 248
- ν_μ CCQE arXiv:1812.05679 [physics.ins-det], accepted to EPJC
- NC elastic
 MICROBOONE-NOTE-1053-PUB
- ν_μ CC Np, 2p
 MICROBOONE-NOTE-1056-PUB
- CC 1π+
- CC coherent π
- CC K±
- NC π⁰
- ... and more

NuMI:

- v_e CC inclusive
 MICROBOONE-NOTE-1054-PUB
- ν_e CC 0π
- Kaon decay at rest (KDAR)

See Pip Hamilton's talk this afternoon

Studying Neutrino Interactions: ν_μ CCπ⁰

- Exclusive measurements like this one allow us to study final state interactions
- Can compare to past measurements on deuterium and carbon
- Can evaluate accuracy of generators assuming different nuclear models
- First implementation of fully automated shower reconstruction to analyze LArTPC data

$$\langle \sigma(\nu_{\mu} + Ar \rightarrow \mu^{-} + 1 \pi^{0} + X) \rangle_{\Phi} = 1.9 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \times 10^{-38} \text{ cm}^{2}/Ar$$

Studying Neutrino Interactions: ν_μ CCπ⁰

- Exclusive measurements like this one allow us to study final state interactions
- Can compare to past measurements on deuterium and carbon
- Can evaluate accuracy of generators assuming different nuclear models
- First implementation of fully automated shower reconstruction to analyze LArTPC data

$$\langle \sigma(\nu_{\mu} + Ar \rightarrow \mu^{-} + 1 \pi^{0} + X) \rangle_{\Phi} = 1.9 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \times 10^{-38} \text{ cm}^{2}/Ar$$

Studying Neutrino Interactions: v_µ CC inclusive

- Single and double differential cross sections are measured as a function of p_μ and θ_μ
- Use multiple coulomb scattering for measuring muon momentum => not only contained particles!

arXiv:1905.09694 [hep-ex], accepted to PRL

Low Energy Excess Models for MicroBooNE

- What does a MiniBooNE-like LEE signal look like in MicroBooNE?
- 2 hypotheses:
 - v_e-like excess
 - γ-like excess (NC Δ radiative decay resonance)
- Deconvolve MiniBooNE's detector effects
- Convolve MicroBooNE's detector effects
- v_e-like excess mostly at low energy
 => electron shower topology different at low energy

MICROBOONE-NOTE-1043-PUB

Low Energy Studies

- Multiple, independent blind analyses
- Multiple reconstruction packages
- Multiple target event topologies
- Electron-like:
 - WireCell reconstruction
 - Deep Learning reconstruction
 - Pandora multi-algorithm reconstruction
- Photon-like :
 - Pandora multi-algorithm reconstruction

WireCell Reconstruction Tomographic reco. Creates 3D space points and clusters in 3D **Space point creation** 3D clustering

MICROBOONE-NOTE-1040-PUB

Deep Learning Reconstruction Uses CNNs for PID and track/shower pixel labels Pixel labeling example on a ν_μ CC π⁰ event

JINST 12, P03011 (2017) PRD 99, 092001 (2019)

Pandora Multi-Algorithm Reconstruction Toolkit

Clusters in 2D independently on each plane before matching across planes to form 3D reconstructed tracks and showers

Eur.Phys.J. C78 (2018) no.1, 82

See the talk from Mark Ross-Lonergan on Friday

Selecting e-Like Events

Multiple complimentary searches:

- High purity, exclusive 1e1p with Deep Learning
- High efficiency, more inclusive 1e0πNp with Pandora
- Fully inclusive with Pandora+WireCell

Major challenges

- reconstructing low energy electrons that do not shower
- rejecting non-v_e backgrounds

Selecting y-Like Events

- NC Δ radiative search in investigating both 1γ1p and 1γ0p to maximize signal statistics, and is using Pandora reconstruction
- Major challenge is understanding and rejecting NCπ⁰ backgrounds. Topology for these is 2γ1p or 2γ0p, but second shower can be difficult/impossible to reconstruct
- First analysis of the NC Δ → p+γ interaction by a neutrino experiment!

MICROBOONE-NOTE-1041-PUB

Constraining Systematics

- Want to constrain systematics on intrinsic v_e backgrounds
 - unconstrained flux and cross section uncertainties are 20-30%
 - constraints should significantly improve our sensitivity to an excess
- Also want to constrain other beam-related backgrounds
- Without near detector, we plan to use measurements of v_{μ} events to constrain our uncertainties

Constraining systematics

uncertainties

Reconstructed E_v (MeV)

not shown

1000

1200

Constraining Systematics

Constraining Systematics

Summary

- MiniBooNE has presented an updated measurement of a low energy excess with twice the statistics in neutrino mode in 2018
 - Very stable and well understood detector
 - In Situ measurement of the backgrounds and different v-C cross sections
 - Combined LSND+MiniBooNE excess has a 6.1σ significance
- MicroBooNE has made significant progress towards analyses that will test both possible interpretations of the MiniBooNE excess
 - Signal processing, calibration and detector physics
 - v-Ar cross section measurements
 - Independent analyses, exploring different hypotheses for the excess, different final states and different reconstructions
 - Constraining systematics by using in situ measurement of ν_μ

MiniBooNE KDAR

appearance of a low energy component as a function of time after a NuMI trigger

Semantic Segmentation Networks

- SSNets identify the content of an image, and work the convolution chain back to the location of the identified objects
- Pixel-level identification
- Trained to recognize tracks to shower
- Track/shower boundaries can be potential vertex!
- How to validate such network?
 - use manual pixel labeling from trained physicist
 - network -human agreement to within 2.5%

JINST 12, P03011 (2017) PRD 99, 092001 (2019)

