Generator Benchmarks: What a NUISANCE

Luke Pickering, pronouns: he/him/his

NuFACT 2019/08/29

MICHIGAN STATE

Team NUISANCE

Comparison tools used in this talk developed as part of NUISANCE with numerous external contributions: special thanks to A. Mastbaum and S. Dolan!

P. Stowell

C. Wret

C. Wilkinson

MICHIGAN STATE

What is a Neutrino Event Generator

- Selects neutrino 'events' from interaction models:
 - Over a range of neutrino energy and species,
 - For a number of 'primary' channels:
 - Neutrino--nucleus (COHPi, CvNS)
 - Neutrino--multi-nucleon (2p2h)
 - Neutrino--nucleon (QE, RESPi)
 - Neutrino--parton (DIS)
 - o In a nuclear environment:
 - Fermi motion distribution
 - Removal energy
 - Collective effects (RPA)
 - Final state re-interactions of primary particles
- Often factorises the simulation of nuclear model, primary interaction, and FSIs.

Want to learn about neutrinos.

Flux x Cross section

Want to learn about neutrinos, but see interactions

Flux x Cross section

= Event rate

Want to learn about neutrinos, but see interaction final states.

Observed properties

Need to work back from observables to learn about neutrinos: Done via generators

Flux x Cross section

= Event rate

Observed properties

- Predict backgrounds for exotic processes:
 - Nucleon decay, dark matter, ...
- For v-A cross-sections:
 - Simplifies efficiency determination
 - Predict purity of signal selections
 - Propagate errors correctly to published data

- Predict backgrounds for exotic processes:
 - Nucleon decay, dark matter, ...
- For *v*-A cross-sections:
 - Simplifies efficiency determination
 - Predict purity of signal selections
 - Propagate errors correctly to published data
- For oscillation physics:
 - Predict observable distributions as a function described to the second se

- Predict backgrounds for exotic processes:
 - Nucleon decay, dark matter, ...
- For v-A cross-sections:
 - Simplifies efficiency determination
 - Predict purity of signal selections
 - Propagate errors correctly to published data
- For oscillation physics:
 - Predict observable distributions as a function (Energy to correctly infer oscillation parameter values.

- Predict backgrounds for exotic processes:
 - Nucleon decay, dark matter, ...
- For *v*-A cross-sections:
 - Simplifies efficiency determination
 - Predict purity of signal selections
 - Propagate errors correctly to published data
- For oscillation physics:
- Progress made in two prong approach:
 - Bottom up: Theory development
 - Top down: Comparison and benchmarking against published data

How do we try and make them right: Theory

- Improve nuclear response models in generators:
 - e.g. SuSAv2 1p1h+2ph2 PRD 94, 093004
 (2016)
- Improve primary interaction models in generators:
 - e.g. MK single pion production PRD 97, 013002 (2018)

How do we try and make them right: Theory

- Improve nuclear response models in generators:
 - e.g. SuSAv2 lplh+2ph2 PRD 94, 093004 (2016)
- Improve primary interaction models in generators:
 - e.g. MK single pion production PRD 97, 013002 (2018)
- Improve simplifications in the MC:
 - Recent interest on un-doing the primary interaction factorisation to better-capture initial and final state physics and lepton-hadron correlations.

How do we try and make them right: Tune

 In an ideal world, the model would describe nature up to some unknown parameters.

How do we try and make them right: Tune

- In an ideal world, the model would describe nature up to some unknown parameters:
 - We don't live in that world.
 - Confronting the models with a variety of data will improve predictions and highlight areas for theory development.

How do we try and make them right: Tune

- In an ideal world, the model would describe nature up to some unknown parameters:
 - We don't live in that world.
 - Confronting the models with a variety of data will improve predictions and highlight areas for theory development.

Dangers of tuning:

- Propagate CV+uncerts from well-described projection to poorly described projection without extra uncertainties.
- e.g. Tune in inclusive lepton variables and predict hadronic shower variables.

Meet the Generators

	Version/ Tune Used	Nuclear-model + QE-like	Single Pion Production	Higher W	Fragmentation	FSI
NEUT	5.4.0	Valencia: - 1p1h+RPA - 2p2h	Rein-Sehgal + lepton mass effects	Bodek-Yang low Q ²	Pythia 5	Tuned Salcedo-Oset cascade
GENIE	v3.0.4 G1810a_0211 + bug-fixed splines	Valencia: - 1p1h+RPA - 2p2h	Rein-Sehgal 16 resonances non-interfering (BC Tuned)	Bodek-Yang low Q ²	AGKY+Pythia 6	Tuned effective single interaction (hA)
NuWRO	v19.02	- Benhar SF w/ opt. pot. - Valencia: RPA & 2p2h	Delta + Pythia Low W	Bodek-Yang low Q ²	Pythia 6	Tuned Salcedo-Oset cascade

Notable Recent Developments

- NEUT:
 - Nieves 1p1h, LFG nuclear model
 - Improved multi-pion production from BC tune
 - o MK pion production, Bug fixes in R-S pion production

Notable Recent Developments

Phys. Rev. C 100, 015505 (2019)

NEUT:

- Nieves 1p1h, LFG nuclear model
- Improved multi-pion production from BC tune
- MK pion production, Bug fixes in R-S pion production

NuWro:

- Updates to <u>spectral function</u>
- Update of FSI cascade by comparison to nuclear transparency data.
- Integration of electron scattering simulation.

Notable Recent Developments

Phys. Rev. C 100, 015505 (2019)

NEUT:

- Nieves 1p1h, LFG nuclear model
- Improved multi-pion production from BC tune
- MK pion production, Bug fixes in R-S pion production

• NuWro:

- Updates to <u>spectral function</u>
- Update of FSI cascade by comparison to nucleartransparency data.
- Integration of electron scattering simulation.

GENIE:

- Version 3 released!
- \circ Extensive v-N tuning to bubble chamber data
- Many improvements to electron scattering simulation (c.f. Or Hen e4nu Plenary)
- Some significant bug fixes

*Genie R-2_12_10

• Range of:

Neutrino energies

- Range of:
 - Neutrino energies
 - Targets
 - Final state topologies
 - Observable projections

- Range of:
 - Neutrino energies
 - Targets
 - Final state topologies
 - Observable projections
- Sensitivity to:
 - Model choice
 - Free parameter central values
 - Free parameter uncertainties

T2K data: PRD98, 032003 (2018)

Plot: arXiv:1810.06043

- Range of:
 - Neutrino energies
 - Targets
 - Final state topologies
 - Observable projections
- Sensitivity to:
 - Model choice
 - Free parameter central values
 - Free parameter uncertainties
- Ability to make quantitative statements about GOF
- Give nature fewer places to hide!

T2K data: PRD98, 032003 (2018) MINERvA data: PRL 121 (2018) no.2, 022504

Plots: arXiv:1810.06043

L. Pickering

- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.

- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.

- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.
- Data is old with large statistical errors and often unknown systematic errors (largely flux).

- (quasi-)free of any nuclear effects.
 - Granular reconstruction and unambiguous final state topologies.
 - Allows tuning of 'primary' neutrino nucleon/part interaction.
- Data is old with large statistical errors and often unknown systematic errors (largely flux).
- GENIE v3 provides <u>tuned models</u> through extensive comparisons to a wide range of BC data.

Let's Play... χ-by-eye!

Let's Play... χ-by-eye!

For each 'data set', guess which MC prediction fits the data better.

How About Now?

What you expected?

Systematic parameter allows shift in Something. *e.g.* separation energy

Systematic parameter allows normalization change. *e.g.* flux uncertainty.

Nuclear data: MiniBooNE CCQE

- Data sets without published correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
 - Many bins, no published error matrix.

PRD 93 072010

	10.7
	$\chi^2_{ m min}/N_{ m DOF}$
All	117.9/228
$MINER\nu A$	30.3/13
MiniBooNE	65.7/212
ν	69.1/142
$ar{ u}$	46.1/83
$M\nu A$ vs MB	117.9/228
ν vs $\bar{\nu}$	117.9/228

Nuclear data: MiniBooNE CCQE

- Data sets without published correlated errors are difficult to use in a global fit.
- MiniBooNE CCQE(like):
 - o Many bins, no published error matrix.
 - What should the contribution to the global GOF be
 - Fully uncorrelated: $\sim \sum_{i \in \text{bins}} (\text{Data-MC})_i^2$
 - Fully correlated: $\sim \sum_{i \in \text{bins}} (\text{Data-MC})_i^2 / \text{NBins}$
 - o In reality, probably somewhere in between.
 - If used naively, will incorrectly dominate a tune and more data won't help...
- But, we want to use the information that this data holds, so cannot just ignore it...

PRD 93 072010

	$\chi^2_{ m min}/N_{ m DOF}$
All	117.9/228
$MINER\nu A$	30.3/13
MiniBooNE	65.7/212
ν	69.1/142
$ar{ u}$	46.1/83
$M\nu A$ vs MB	117.9/228
ν vs $\bar{\nu}$	117.9/228

MiniBooNE CCQE-Like

- Not possible to calculate useful GOF, so I'm not going to attempt to...
- The data here is the 'less corrected' CCQE-like data:
 - No pionless
 delta decay
 subtraction
 (subset of MEC
 diagrams).

- Transverse and longitudinal lepton momenta
 - Kinematics
 observed by
 detector: minimal
 correction required
 - Sensitive to energy and momentum transfer in a known flux

- Transverse and longitudinal lepton momenta
 - Kinematics
 observed by
 detector: minimal
 correction required
 - Sensitive to energy and momentum transfer in a known flux
- Predicted ~well for bulk of distribution:
 - Higher angle poorlypredicted

 Majority of difference comes
 from high angle bins.

- Majority of difference comes
 from high angle
 bins.
- Could mask out bad bins, but when to stop p-hacking...

- χ-by-eye GOF seems ≤ worse (to me) than calculated GOF.
- Possibly because of PPP:
 - Smaller MC normalization can give 'artificially' low χ^2 if uncertainty is not fully characterized.
- Need to be wary of PPP when fitting.

- MINERvA have released a number of pion datasets, each with multiple projections
 - Lots of information, much more than shown here.
 - Fairly poorly predicted all around.
- arXiv:1903.01558: discusses some of the difficulties seen fitting these data.

Single Transverse Variables

- Recent interest in lepton-hadron correlations:
 - Can be more sensitive to certain effects than lepton-/hadron-only
 - Efficiency/smearing corrections need to be treated with more care.
- Direction/magnitude of momentum imbalance is sensitive to initial and final state effects PRD 98 032003 (2018).

Transverse missing momentum

- Signal phase space cuts chosen for detector capabilities:
 - Results in less model-dependent efficiency correction.
 - T2K:
 - 500 MeV < p_p
 - 250 MeV < p μ , 1 < cos(θ) < -0.6
 - O MINERVA:
 - $450 < p_p < 1200 \text{ MeV}, 0 < \theta < 70^\circ$
 - 1.5 < pµ < 10 GeV, 0 < θ < 20°

Transverse missing momentum

 MINERvA error matrix provides a tight shape constraint around the peak which drives the high GOF.

 δp_{\perp} (GeV/c)

L. Pickering

MINERVA: PRL 121 (2018)

Transverse missing momentum

- MINERVA error matrix provides a tight shape constraint around the peak which drives the high GOF.
- Equivalent matrix for the T2K result exhibits anti-correlations between neighbouring bins:
 - More expected for uncertainties that cause bin migrations.

MINERVA CCInclusive: Low recoil

- Interesting/enlightening projections:
 - Inclusive models described by q0/q3
 - But requires
 model-dependent
 reconstruction of EAvail
 and true momentum
 transfer.
- GOF is awful for all available models:
 - Inconclusive when comparing one bad fit to another bad fit.

MINERVA CCInclusive: Low recoil

- Interesting/enlightening projections:
 - Inclusive models described by q0/q3
 - But requires
 model-dependent
 reconstruction of EAvail
 and true momentum
 transfer.
- GOF is awful for all available models:
 - Inconclusive when comparing one bad fit to another bad fit.

Low energy transfer region especially poorly predicted.

MINERVA CCInclusive: Low recoil

Comparisons to Nuclear data: MicroBooNE

- Liquid Argon is a key detector technology for the next generation of experiments
 - Need to understand neutrino interactions on Ar40 target.
- Data release:
 - Reconstructed distributions
 - True→reco folding matrix
- Potentially useful technique to reduce model bias in published data.

- Minimize model bias while maximising efficacy of data:
 - Lots of recent and rediscovered work on robust statistical techniques to avoid bias in unfolding.
 - Thoughtfully chosen observable event projections:

- Minimize model bias while maximising efficacy of data:
 - Lots of recent and rediscovered work on robust statistical techniques to avoid bias in unfolding.
 - Thoughtfully chosen observable event projections:
 - What can a detector measure with good, well-understood efficiency?
 - What projections require minimum interaction model-dependent corrections?
 - Sensible phase space restrictions.

- Minimize model bias while maximising efficacy of data:
 - Lots of recent and rediscovered work on robust statistical techniques to avoid bias in unfolding.
 - Thoughtfully chosen observable event projections:
 - What can a detector measure with good, well-understood efficiency?
 - What projections require minimum interaction model-dependent corrections?
 - Sensible phase space restrictions.

- Minimize model bias while maximising efficacy of data:
 - Lots of recent and rediscovered work on robust statistical techniques to avoid bias in unfolding.
 - Thoughtfully chosen observable event projections:
 - What can a detector measure with good, well-understood efficiency?
 - What projections require minimum interaction model-dependent corrections?
 - Sensible phase space restrictions.
 - Publish correlated errors wherever possible:
 - Between projections
 - Between datasets.

Future: 1

- Last few years seen increase in sophistication of Opi analyses
 - Lepton/hadron correlations
 - Less Model-dependent selections and projections
 - Would be very useful to see similar renaissance in pion production datasets.
- Future MicroBooNE (and SBND) data sets will be critical for model builders to benchmark and develop before DUNE and Fermilab Short Baseline program.

Future: 2

- These last two years have seen an uptick in model development:
 - o GENIE tuning, v3, NEUT and NuWro model developments, ECT* Trento workshops
 - Lots of progress due to closer interaction with theory community, need to continue!
- But given how much LBL programs will rely on the predictions and uncertainties, the community is quite under person-powered...
 - Plenty of room for important work and novel intellectual contribution
- Can learn a lot of the necessary nuclear physics from electron scattering: GENIE + NuWro have e-A modes, ongoing work by e4nu.
- See what GiBUU has to say for itself...

Summary

- The loftiest goals of neutrino oscillation physics depend on the accuracy of event generator predictions and associated uncertainties.
- Recent u_µ→0π data releases have been more statistically robust, but GOF between available models is generally poor
 - Room for improvement in generator predictions, xsec analyses and data releases and global fitting methodology.
 - Correct, correlated errors are a comparators best friend!
- More recent work on removing assumptions in generator factorization and implementing state-of-the-art predictions is promising!

L. Pickering

THERE IS ALWAYS HOPE

Data Comparison: δp_{\perp}

T2K: 1802.05078

MINERVA: 1805.05486

(GENIE norm may not be quite right to a few %, its fine for here, but probably not best to show these plots as is

https://doi.org/10.1016/j.physrep.2018.08.003

 ν_{ν} Flux (arbitrary norm.)

MiniBooNE/SBN

NuWro v11q, $\sigma_{\nu,C}(E_{\nu})$

CC-SPP

CC-Total

 $\tau_{\nu_{\mu}C} (10^{-38} \text{cm}^2 \text{nucleon})$

Signal definitions

- T2K: 1802.05078
- MINERVA: 1805.05486
- (GENIE norm may not be quite right to a few %, its fine for here, but probably not best to show these plots as is elsewhere)

500 MeV < pp 250 MeV < pmu, 1 < cos(theta_mu) < -0.6

450 < pp < 1200 MeV, 0 < theta_p < 70° 1.5 < pmu < 10 GeV, 0 < theta_mu < 20°

Stuck pion rate: $\delta\alpha_{+}$

QEL-pure at low $\delta \alpha t$ FSI and stuck pion rich at higher $\delta \alpha t$

 $\times 10^{-39}$

- S. Dolan: Relative to dpt, stuck pions more away from QEL peak (all non-QE, see later, backup)
- GENIE V304 below no longer has elastic hA, less lumpy

0.2

Stuck π

0.4

Phys.Rev.Lett. 121 (2018), 022504

GENIE No-FSI (11.5)

6

More pn

- Also wanted to look at stuck pi vs. 2p2h
 - GiBUU predicts no second peak for QEL, but NEUT does.
- And FSI/Nuclear momentum/binding model changes:
 - LFG/SF in NEUT qualitatively similar, contrary to NuWro
 - FSI mostly interacts with signal selections
- May be interesting to look at energy evolution as well (see last RΔCKIIP)

- For the charged pion analyses:
 - ~100% efficiency correction at high angle.
 - Where is this 'MC fill-in' in other distributions?
- Upcoming re-analysis still no phase space cuts.
- No covariance between distributions (pµ, θµ, Τπ, θπ, Q²) or samples (π+, π0, υ, υ):
 - Difficult to consistently use together in a meta-analysis.

MiniBooNE 1Pi+

- Rejection only in selection, not signal definition:
 - Will be efficiency corrected back with NUANCE-calculated efficiency.
 - Better to include analysis cuts in both signal and selection where possible, then handle new out-of-phase space backgrounds, but smaller, less model dependent efficiency corrections.

MINERvA: Initial state neutron momentum

- Momentum imbalance in all three dimensions is sensitive to initial state fermi nucleon momentum distribution.
 - o GOF is poor for all models.

