

Contents

- Challenges from Neutrino Detection
- Detectors of Neutrino Experiments
- Developing for Future Directions

Energy Frontier
Intensity Frontier
Cosmic Frontier

Face to the Challenges

Neutrino mass ordering Neutrinoless-double-beta-decay (NLDBD) Neutrino Mass CP violation phase

Testing the three-favor paradigm Precision measurements of mixing parameters Neutrino-nucleus interactions over a wide range of energies

Energy Frontier
Intensity Frontier
Cosmic Frontier

Face to the Challenges

Sterile Neutrinos
Non-Standard Neutrino Interactions
Non-Standard Neutrino Interactions with Dark Matter
Neutrino Tridents

Non-Unitarity
Lorentz Violation
Neutrino Decays
Heavy Neutral Leptons

Ultra-light dark matter
Large Extra-Dimensions
Neutrino Dipole Operators
BSM Physics with Tau Neutrinos

Energy Frontier
Intensity Frontier
Cosmic Frontier

Face to the Challenges

Energy Frontier
Intensity Frontier
Cosmic Frontier

Pion decay-in-flight Muon decay-in-flight Pion decay-at-rest Isotope decay-at-rest

Neutrino & Neutrino BSM

Accelerator neutrinos Reactor neutrinos Cosmogenic Neutrinos

Neutrino oscillation
Neutrino interaction
Neutrino properties
Neutrino astrophysics/cosmology

Geo Solar Big Bang Supernovae Atmospheric Solar Atmospheric High-energy astrophysical

.....

Energy Frontier
Intensity Frontier
Cosmic Frontier

Neutrino-nucleus interactions over a wide range of energies Precision measurements of mixing parameters Testing the three-favor paradigm

Testing the three-favor paradigm Neutrino mass ordering

Neutrinoless-double-beta-decay (NLDBD)

CP violation phase Neutrino Mass Coherent neutrino Pion decay-in-flight Muon decay-in-flight Pion decay-at-rest Isotope decay-at-rest

Accelerator neutrinos Reactor neutrinos Cosmogenic Neutrinos

Neutrino & Neutrino BSM

Sterile Neutrinos

Neutrino Tridents

Non-Unitarity

Lorentz Violation

Neutrino Decays

Heavy Neutral Leptons

Ultra-light dark matter

Large Extra-Dimensions

Neutrino Dipole Operators

BSM Physics with Tau Neutrinos

Non-Standard Neutrino Interactions

Non-Standard Neutrino Interactions with Dark Matter

Neutrino oscillation
Neutrino interaction
Neutrino properties
Neutrino astrophysics/cosmology

Geo Solar Big Bang Supernovae Atmospheric Solar Atmospheric High-energy astrophysical

....

Few MeV neutrinos from reactors
Few 100MeV to a few GeV in long-baseline experiments
UHE cosmogenic neutrinos...

Accelerator neutrinos Reactor neutrinos Cosmogenic Neutrinos

Scintillator Detectors

Noble Liquid Detectors

Water Cherenkov Detectors

Ice Detectors

Photodetectors

Calorimetry

Gas Detectors

Silicon/Germanium Detectors

Superconducting Detectors

Quantum Sensors

Accelerator neutrinos
Reactor neutrinos
Cosmogenic Neutrinos

Scintillator Detectors

Noble Liquid Detectors

Water Cherenkov Detectors

Ice Detectors

Photodetectors

Calorimetry

Gas Detectors

Silicon/Germanium Detectors

Superconducting Detectors

Quantum Sensors

Low energy threshold Low background Large mass

High efficiency Better Reconstruction Fast timing PID

High voltage delivery Cold electronics design

Beam-generated Fluxes

Directional detectors for low-energy neutrinos

Precise measurement of vertex substructure in neutrino scattering

Scintillator Detectors

Noble Liquid Detectors

Water Cherenkov Detectors

Ice Detectors

Photodetectors

Calorimetry

Gas Detectors

Silicon/Germanium Detectors

Superconducting Detectors

Quantum Sensors

(Micro-)electronics
Calibration systems
Trigger and Data Acquisition
(Automated) event reconstruction
Computing and Machine Learning

Few MeV neutrinos from reactors
Few 100MeV to a few GeV in long-baseline experiments
UHE cosmogenic neutrinos...

Scintillator Detectors

Noble Liquid Detectors

Water Cherenkov Detectors

Ice Detectors

Photodetectors

Calorimetry

Gas Detectors

Silicon/Germanium Detectors

Superconducting Detectors

Quantum Sensors

Low energy threshold Low background Large mass

High efficiency
Better Reconstruction
Fast timing
PID

Accelerator neutrinos
Reactor neutrinos
Cosmogenic Neutrinos

Beam-generated Fluxes
Directional detectors for low-energy
neutrinos
Precise measurement of vertex
substructure in neutrino scattering

(Micro-)electronics
Calibration systems
Trigger and Data Acquisition
(Automated) event reconstruction
Computing and Machine Learning

High voltage delivery

Cold electronics design

Large mass

Direction

Water detectors

Optical module

Top buoy
Hydrophone
Compass,
tiltmeter,
electronics
depth

Electro-optical
cable ~ 40 km

Electronics container
Link cables
Junction box

A N T A R E S KM3NeT-ORCA KM3NeT-ARCA

Over GeVs interactions

Ice detectors

Core (PINGU)--IceCube-86, IceTop Multi-component MeV to EeV neutrino detection 1000m IceCube Large mass Direction DeepCore IC Upgrade 17m 100m seven strings, exact geometry still under optimization ~ I 20 modules/string, 2-3m vertical spacing in deep ice precision calibration and GeV-scale neutrino physics 1450m 2100m 2140m 2450m 2450m 2440m funded, deployment in 2022-23

Instrumented Depth

Optical Modules

KM3Net Digital Optical Module

finer granularity, good timing, directional sensitivity, lower dark noise, less sensitive to Earth magnetic field, etc

Hamamatsu R12199-02

LS detectors

(1~20k ton; <MeV~ 10s MeV)

Scintillator Physics

(e.g. SNO+, KamLAND-Zen)

(e.g. AIT-WATCHMAN)

Reactor v (e.g. Daya Bay, PROSPECT, JUNO)

Medical Physics

(e.g. 3D-imaging for lon-

Nonproliferation Liquid Scintillator

(Metal-loaded & Water-based) beam therapy & TOF-PET)

unique requirement for individual detector

Solar & Geo v (e.g. LENS, Borexino, KamLAND, SNO/SNO+)

Dark Matter & Accelerator Physics (e.g. LZ, JSNS2)

Achieve both a high light yield and direction reconstruction

- Search for new scintillation medium with Scalability, Stability, Compatibility and Photon-yield
- Cleaner and Brighter (Purification)
- Metallic-ion loadable (Mdoped LS)
- Pulse-shape discrimination
- Directionality
 - PID and background rejection
 - Water-based Liquid Scintillator (WbLS) and Slow liquid scintillator

Common features between detectors

19

Directional Liquid Scintillator

A <u>Cherenkov-visible Scintillation Liquid</u> is the *key* to future LS detectors:

- Oil-based scintillator: reducing scintillation light or slowing scintillation decay-time to allow Cherenkov imaging
- Water-based Liquid Scintillator (WbLS)
- Fast photosensors/electronics (LAPPD)
- Liquid Scintillator Imaging

Directional detector

Interference filters

Cerenkov/scintillation separation by wavelength sorting

506 nm Long-Pass: LAB+PPO Transmitted Light beta source, LAB+PPO target, transmitted light shows clearly separated Cherenkov peak!

21

Liquid Argon Scintillation Light

LAr is a scintillator that emits about 40,000 ph/MeV (E = 0) when excited by MIP
 -at nominal DUNE SP E = 500 V/cm the yield is approximately 24,000 ph/MeV
 (reduced due to recombination)

Higher light yield
Photon and charge
PID
Cleaner

Light collection (VUV region)
Charge collection

- Ionization radiation in LAr results in formation of excited dimer Ar₂*
 - -photon emission follows through de-excitation of singlet $^1\Sigma$ and triplet $^3\Sigma$ states
 - -photons emitted in a narrow band around 128 nm (VUV region)
 - -de-excitation from $^1\Sigma$ is fast with $\tau_{fast}\approx 6$ ns
 - -de-excitation from $^3\Sigma$ is slow with $\tau_{slow} \approx 1.3~\mu s$
 - -ratio of fast and slow components dependent on the ionizing particle through ionization density of LAr (0.3 for e⁻; 1.3 for α ; 3 for n)
 - => basis for PID capability

Noble Element Detectors

Sub-KeV to few GeV, kg to few 10 kt

- Noble Element Detectors for Accelerator Neutrino Physics
 - Optimally Granular Charge Collection and Electronics
 - Efficient and High-Quality VUV Light Detection
 - Delivery of Very High Voltage
 - Calibration of a large detector system.
- Noble Detectors for Neutrinoless Double Beta Decay Searches
 - Energy Resolution
 - Material Screening and Radio purity
 - Topology
 - Daughter Tagging
 - High Voltages and Long Drift Lengths
 - Calibration

Dark matter

Isotope Enrichment

DUNE Challenges

So far largest LAr TPC operated ICARUS 2 x 235t (active) → 1 DUNE
 FD module will be ~10kt

ICARUS

- Several new challenges to scale to DUNE. Need prototypes to develop solutions scalable for DUNE
- Engineering aspects
 - Test full scale detector elements used in DUNE, for SP
 - Installation sequence and test procedures
 - Long term operation stability
- Physics aspects
 - Benchmark reconstruction performance
 - dQ/dx recombination
 - calibration techniques
 - Characterize hadron argon interactions

3D model of SP

3D model of DP

The biggest small prototype (1/20 of one DUNE module)

2 11x11x11 m³ cryostats 2 LAr TPC technologies, SP and DP 750t of LAr → 420t active TPC

ArgonCube Modules

Opaque dielectric G10 structure (200 kV/cm @ 1 cm) Transparent to tracks:

	LAr	G10
Rad. Lenght (cm)	14.0	19.4
Had. Int. Length (cm)	83.7	53.1

Maximise active volume. Minimise dead material.

Charge readout:

Compact, mechanically robust, and unambiguous

Light readout:

Compact, dielectric, and large area coverage

ARAPUCA concept

ARAPUCA is the light trap

ND280:

SuperFGD

- Dichroic (short-pass) filter to trap wavelength-shifted light inside ARAPUCA reflective cell
- > p-TerPhenyl on outer surfaceTPB on inner surface (trapped)
- ➤ Provides segmentation along beam direction

Cut-away illustration of an ArgonCube module

ArCLight cross-section

Photodetectors

Photons detection is fundamental to particles' detection at ranging from liquid nitrogen up to room temperature.

- PMT: low noise, detection of single photons with nanosecond timing
- LAPPD (Large Area Picosecond Photodetector): timing to <100 ps and more immune to magnetic fields
- Silicon Photomultipliers (SiPMs): solid
 - Small but economical, and when cooled, have dark noise levels competitive to PMTs.
 - Sensitive in VUV, release the limiting needs for secondary wavelength shifters.
 - Lower high voltage, Low power consumption
 - · Not affected by magnetic fields, Robust, Negligible aging effects, Mass production
 - Cross-talk, After-pulsing.
- Superconducting transition edge sensors (TES)
 - · Fast and high efficiency
 - · Challenges: to build larger arrays and readout technology

20-inch PMTs

Produced by NNVT Co.

20-inch dynode-PMT or Hybrid PMT

Produced by Hamamatsu Co.

SiPM

TES

Abalone concept

HQE NNVT 20"MCP PMT

In 2015, the MCP-PMT work group did the best to improve the CE of the MCP modules, and finally, the CE of the MCP-PMTs was improved from 70% to 100%.

Uniformity

Better TTS R&D

LAPPD features

- Large Active Area: 195 x 195 mm²
- Picosecond timing resolution
- mm spatial resolution
- QE >20% w/bi-alkali photocathode
- Fused Silica/Borosilicate window
- Flat square geometry, high filling factor
- Lower Cost per Unit Area

At optimal operation conditions @ 50V extraction voltage, 875V-900V MCP voltage with

Dark count rate 30-60 Hz/cm²

229mm

- Electronics
- Trigger and Data Acquisition
 - Extract the data at high bandwidth from the tracking detectors without adding a prohibitive burden of material due to the large number of drivers and the power and cooling
 - Data volume to be produced will be at PB scale, which will require significant DAQ infrastructure and computation resource.
- Computing and Machine Learning
 - Overtaken more traditional approaches based on expert hand-tuning and found natural applications in a variety of areas in particle physics
 - Deep Learning for Detector Reconstruction, Data Reconstruction using Deep Neural Networks for LArTPCs, End-to-end Deep Learning for Particle and Event Identification,
 Identification of Double-beta Decay Events, Computational and Real-time Inference Challenges
 - Deep Learning on FPGAs for CMS Level-1 Trigger and DAQ, Track Reconstruction in High-pileup Collider Environment, Integrated Research Software Training in HEP

LArPix 1-D Deconvolution 2-D Deconvolution 750 (a) **DUNE Near Detector** recovered! MicroBooNE 40000 600 30000 20000 10000 MicroBooNE tracks 10000 -20000 30000 150 0 20 40 60 80

Wire [3 mm spacing]

DUNE DAQ and trigger high level design simplified

- We need a self triggering detector for proton decays, atmospheric neutrinos and supernova-burst (SNB) neutrinos.
- · The SNB physics information is contained in a time window that is tens of seconds long
- High level design of DAQ addresses DUNE physics programs, including trigger processing system and data buffering (data rate in backup slides)

Summary

- Facing to the challenges on neutrino detection
 - Large mass
 - Low background
 - Low energy threshold
 - Directional detectors
- Interesting technologies developing and needed for better detectors
- Interesting Precise detectors for short baseline
- Neutrino BSM & Neutrino Detector

Backup

DUNE

- Precise measurement of neutrino oscillations parameters, particularly δ_{CP} violation phase and determination of mass hierarchy
- Detection of galactic-core supernovae neutrinos
- Nucleon decay
- Search for NSI (Non Standard Interactions)

Near Detector (ND) Hosted at Fermilab

Far Detector

- Located 4850 ft (1500 m) underground at SURF, enables low-energy and atmospheric neutrino physics
- Four 10 kton (fiducial) LArTPC modules, with single and dual phase detector designs
- Integrated photon detection systems

Single Phase

Active height 12 m
Active length 58 m
Maximum drift 3.5 m
Wire spacing 5 mm
Wire channels 384,000
Phot. det. ch. 6000

Dual Phase

Active width 12 m
Active length 60 m
Maximum drift 12 m
CRP pixel size 3 mm
CRP channels 153,600
PMT channels 720

Design drift field: 500 V/cm

Electron drift speed at 500 V/cm: 1.6 mm/µs

ICARUS T600 Detector

- Two identical LArTPC modules
 - 476 tonnes total fiducial mass
 - Two drift modules per module sharing central cathode
 - 1.5 m drift length
 - ~ 500 V/cm drift field (~1.6 mm/µs drift velocity)
- Three wire planes with 3 mm pitch (0°, ±60° wrt horizontal)
 - Two induction and one collection (last plane)
 - ~54,000 total wires
 - 400 ns sampling time
- VUV scintillation light read out by PMTs coated in

wavelength shifter

Cathode Plane Cathode Plane V wire plane waveforms V wire plane waveforms

JINST 12 P02017 (2017)

MicroBooNE TPC

- 170 tonnes of liquid argon (90 tonnes active).
- Cathode at -70 kV. E_{drift} ~ 273 V/cm.
- Maximum drift length: 2.5 m. Drift time: 2.3 ms.
- Three wire planes to reconstruct 3D interaction. 3 mm wire pitch. 8256 channels.
- Two induction planes with 2400 wires each at ± 60° from vertical. One collection plane with 3456 vertical wires.
- Cold front-end electronics.
- 2 MHz digitization with warm electronics.

JUNO 20-inch PMTs selection

- Price
- Merit of Physics

- Multiple vendors: {A, B, C, ...}
- Award fractions of certain combination: $\{\eta_A, \eta_B, \eta_C, ...\}, \Sigma_i \eta_i = 1$
- The best combination of different products was determined by selecting the maximum total score

$$S = \sum_{i \in \{A, B, C, \dots\}} (P_i^{spec} + P_i^{price} + P_i^{committee}) \cdot S_i \cdot \eta_i$$

Final Choice in Dec 2015
15k MCP-PMT from NNVT
5k dynode-PMT (R12860-50) from Hamamatsu

Incom MCPs

Glass capillary arrays functionalized in-house with ALD

MgO secondary electrons Primary Electron Energy (eV)

Gain Uniformity in 203mm X 203mm MCP

Figure 2. Secondary electron yield from select thicknesses of ALD MgO and Al2O3. See Figure 3 for the entire data set.

Fig. 8: Average gain image "map" (<15% overall variation). 8" MCP pair 20µm pore, 60:1 L/D ALD-

Fig. 9: 20 cm ALD MCP pair background, 500 sec, 0.03 events/cm²/sec¹. Overall background ~8× better than standard glass MCPs (less K⁴⁰),

MCPs are a separate product line. MCP pair. ~7 × 106 gain, 0.7mm inter-MCP gap/200V. Standard dimensions DIA33mm, SQ53mm, SQ60mm, SQ127mm, SQ200mm. Curved MCPs.

SiPM

- SiPM are matrices of avalanche photo diodes with a common cathode that are operated in Geiger mode.
 - Operates under a substantially lower high voltage than the PMT
 - Low power consumption
 - Not affected by magnetic fields
 - Robust, since it is not affected by light as much as PMTs
 - Negligible aging effects, on the contrary to what happens to PMTs
 - Mass producible and their price is fastly decreasing.
 - Cross-talk between neighboring photo-cells
 - After-pulsing.

Superconducting transition edge sensors (TES)

- A transition-edge sensor is a thermometer made from a superconducting film operated near its transition temperature.
- It allows to push measurement to the point that quantum effects become the dominant effect limiting the sensitivity of the technique.
 - One design allows the device to obtain low timing jitter, 18.4 ps, and high absorption efficiency 99.9% at 775 nm.

• Challenges: to build larger arrays (tens of thousands of pixels) while striving for an energy resolution allowing for the detection of individual photons

Superconducting detector readout technology

Abalone concept

Organic sensors

- These ultra-thin organic sensors with carbon instead of silicon as material converting light into electrical signals – can be applied to CMOS chips over large and small surfaces, as well as to glass or flexible plastic films.
 - more sensitive to light than the conventional silicon versions, with the advantage of simple and cheap to produce.

Calorimetry

- Imaging Calorimeters
- Crystal and Homogenous Calorimetry
- Precision Timing for Calorimeters
 - Picosecond time resolution.
 - Modern image processing technology,
 - Low-cost, high-light-yield, fast and radiation-tolerant organic and inorganic scintillators.
 - Further advances in Silicon Photomultiplier (SiPM) technology
 - Low-cost radiation-tolerant electro-optical transceivers,
 - Continued development of GEANT to match the new information being used in calorimeters

Micro-Pattern Gas Detectors

- MPGD Applications
 - Gas Electron Multiplier (GEM), Micro-Mesh Gaseous Structure (MicroMegas,MM), Thick GEMs (THGEM), also referred to in the literature as Large Electron Multi-pliers (LEM), GEM-derived architecture (-RWELL), Micro-Pixel Gas Chamber (-PIC), and integrated pixel readout (InGrid) are being optimized for a broad range of applications.

Silicon Detectors

- Silicon-based Detectors in Cosmology
 - Astronomical CCD cameras
- Silicon-based Detectors for Dark Matter Detection
 - CCD arrays to directly search for dark matter
 - Germanium CCDs
 - Si(Li) detectors to indirectly search for dark matter
- Ionization pixel detectors with integrated-circuit readout
- Silicon Detectors for Collider Experiments
 - Development of fast timing sensors based on LGADs
 - Monolithic Silicon Pixel detectors (MAPS)
- 3D Si sensors
- Substrate engineering
- 3D integrated IC and small pixel sensors
- Direct access to industrial vendors and foundry processes