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Fa Ce to th e Cha ‘ ‘e nges UHE cosmogenic neutrinos...
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Few MeV neutrinos from reactors
Few 100MeV to a few GeV in long—baseline experiments

Low energy threshold
Low background
Large mass

High voltage delivery
Cold electronics design

High efficiency
Better Reconstructio Accelerator neutrinos

Fast timing Reactor neutrinos
PID : .
Cosmogenic Neutrinos

Beam—generated Fluxes (Micro-)electronics

Directional detectors for low-energy Calibration systems
neutrinos Trigger and Data Acquisition
Precise measurement of vertex (Automated) event reconstruction

substructure in neutrino scattering Computing and Machine Learning
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Water detectors

A few MeV to over 100GeV interactions
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lce detectors

Multi—component MeV to EeV neutrino detection
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Surface Array

Main Array

Core (PINGU)
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IC Upgrade
: 100m

* seven strings, exact geometry still under optimization
* ~120 modules/string, 2—3m vertical spacing in deep ice
* precision calibration and GeV-scale neutrino physics

* funded, deployment in 2022-23
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Cherenkov-weighted Ay [cm?]

Optical Modules

KM3Net
Digital Optical Module

finer granularity,
good timing,
directional sensitivity,
lower dark noise,
less sensitive to Earth
magnetic field, et«
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pressure vessel

mounting structure

main board
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PoS (ICRC2017)1047

ET
Enterprises
w

36cm
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optical coupling elastomer
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UV transparent glass housing

silicone buffer
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magnetic shield
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Hyper-K multi-PMT module R&D
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LS detectors

(1 ~20k ton; <MeV~ 10s MeV)
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Sceintillator Py 55105

Reactor v

(e.g. Daya Bay, PROSPECT,
JUNO)

Common features

between detectors Medical Physics

Nonproliferation Liquid Scintillator (e.o.p-maging for ion.

(e.g. AIT-WATCHMAN)

From Mingfang

(Metal-loaded & Water-based)2am therapy & TOF-PET)

Achieve both a high light
yield and direction
reconstruction

unique requirement for
individual detector

e Search for new scintillation
medium with Scalability,
Stability, Compatibility and
Photon-yield

e Cleaner and Brighter
(Purification)

* Metallic-ion loadable (M-
doped LS)

* Pulse-shape discrimination

* Directionality
* PID and background rejection

* Water-based Liquid
Scintillator (WbLS) and Slow
liquid scintillator
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Directlonal quu’wi Scuntlllator
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Reflection and Transmission by Interference Filters

Directional detector

Interference filters

Cerenkov/scintillation separation by wavelength sorting
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Liquid Argon Scintillation Light

* LAr 1s a scintillator that emits about 40,000 ph/MeV (E = 0) when excited by MIP

-at nominal DUNE SP E = 500 V/cm the yield 1s approximately 24,000 ph/MeV

(reduced due to recombination) Higher light yield
Photon and charge
PID

Cleaner

' Light Signal

Charge Signal

Light collection (VUV region)
Charge collection

* Tonization radiation in LAr results in formation of excited dimer Ar,”

-photon emission follows through de-excitation of singlet 'X and triplet °X states
-photons emitted in a narrow band around 128 nm (VUYV region)

-de-excitation from !X is fast with 1, ~ 6 ns

-de-excitation from X is slow with T, ~ 1.3 us

-ratio of fast and slow components dependent on the ionizing particle through i1onization
density of LAr (0.3 for e; 1.3 for «; 3 for n)

—> basis for PID capability ) .



Noble Element Detectors

Sub-KeV to few GeV, kg to few 10 kt  Noble Element Detectors for
: g : Accelerator Neutrino Physics
The Short-Baseline Neutrino Program at Fermilab | |
e Optimally Granular Charge Collection
"i B Booster Neutrino Beam (BNB) and Electronics
8 Gev protons on Be target . L ohe ; :
= (E. ~ 700 MoV = EffICIel‘?t and High-Quality VUV Light
. : : Detection
ICARUS MicroBooNE
L=600m L=470m SBND * Delivery of Very High Voltage
476 tonnes 90 tonnes L=110m _ _
v data in 2019 v data since Oct 2015 112 tonnes % » (Calibration of a large detector system.
v data in 2020 = 3 ]
5 CLEoSS s o A e * Noble Detectors for Neutrinoless
T e — ~ Double Beta Decay Searches

* Energy Resolution

L7 * Material Screening and Radio purity

DUNE

7 tonne liquid xenon
time-projection
chamber

-+ strumention conduits d TO pO | Ogy
1 DUNE FD module: 10kt cuising .
* Daughter Tagging

iquid Xe { My =S adolinium-loaded . .

Frert wm R ikl auid scnilator * High Voltages and Long Drift Lengths

exchanger

detector L Callbrat|0n

PMTs

High voltage b
feedthrough T __A__ )
494 photomultiplier tubes (PMTs)
Additional 131 xenon “skin” PMTs  Neutron beampipes

Dark matter

1 * |sotope Enrichment
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ProtoDUNE s

DUNE Challenges

So far largest LAr TPC operated ICARUS 2 x 235t (active) > 1 DUNE
FD module will be ~10kt

1
1
i)
i
1
4
1
|
R
A
|
s
J
Js
¥
<u

3D model of SP 3D model of DP

Several new challenges to scale to DUNE. Need prototypes to
develop solutions scalable for DUNE The biggest small prototype (1/20 of
Engineering aspects one DUNE modaule)

2 11x11x11 m3 cryostats
2 LAr TPC technologies, SP and DP
- Installation sequence and test procedures 750t of LAr = 420t active TPC

- Test full scale detector elements used in DUNE, for SP

- Long term operation stability

Physics aspects
1 DUNE FD module

- Benchmark reconstruction performance ICARUS
- dQ/dx recombination .

- calibration techniques [
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ArgonCube Modules
ARAPUCA concept

* ARAPUCA is the light trap
» Dichroic (short-pass) filter to trap wavelength-shifted light inside ARAPUCA
reflective cell

Opaque dielectric G10 structure (200 kV/ecm @ 1 cm)
Transparent to tracks:

LAr G10 E— » p-TerPhenyl on outer surface TPB on inner surface (trapped)
» Provides segmentation along beam direction
Rad. Lenght 14.0 19.4
(Cm) parﬁc\e \; liquid argon mm ===
Had. Int. L th 83.7 53.1 crard®? W* W—
ad. Int. Leng : . /'/ x\ lght ! -
(cm) |
‘ | 127 nm : :
Maximise active volume. Minimise dead material. . \W - Bl g
L Dichroic Filtern < ——/ Glass =
430 nm[~¥ 1lass [
4 TPB | Svroe.
Charge readout: ik | E :> I8
1 H i i, A4l @ Bl emission
Compact, mechanically robust, and unambiguous ‘\ | B oecrum
Light readout: KOS .- 44 @00
Compact, dielectric, and large area coverage -y

LT At

Cut-away illustration of an ArgonCube module

Scintillator cube

ND280:
SuperFGD

Hamamatsu S13360-3050VE 3M Vikuiti ESR

ArCLight cross-section




Photons detection is fundamental to particles’ detection at

P h Oto d ete Cto rS ranging from liquid nitrogen up to room temperature.

PMT: low noise, detection of single photons with nanosecond timing

LAPPD (Large Area Picosecond Photodetector) : timing to <100 ps and more immune to magnetic fields

Silicon Photomultipliers (SiPMs) : solid
*  Small but economical, and when cooled, have dark noise levels competitive to PMTs. SI PM

* Sensitive in VUV, release the limiting needs for secondary wavelength shifters.

10 - 100 pm

* Lower high voltage, Low power consumption
* Not affected by magnetic fields, Robust, Negligible aging effects, Mass production
*  Cross-talk, After-pulsing.

Superconducting transition edge sensors (TES)

* Fast and high efficiency

* Challenges : to build larger arrays and readout technology

20-inch PMTs TES

" 20-inch dynode-PMT 100 ;u’n SIN leg with Nb wire
20-inch MCP-PMT or Hybrid PMT : 4 pmx 240 pm

: v Abalone concept

micron-thick indium  / VAL

+gold+chromium ~ /

composite vacuum |

sealservesasa |

HV feedthrough | scintillator

fraa-space B : ! 0 +HV

Produced by NNVT Co. Produced by Hamamatsu Co.



HQE NNVT 20"MCP PMT

In 2015, the MCP-PMT work group did the best to improve the CE of the MCP Uniformity

modules, and finally, the CE of the MCP-PMTs was improved from 70% to 100%. PDE VS Zenith Angle PDE VS Azimuth angle
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LAPPD features

i incoming photon

top window -

photocathode (pc)

pc gap |
meo1 _.\JM\ AUELARNREAANAN
Z/ZYL’T’CJ’M L

All inexpensive glass

lllustration provided by Univ. of Chicago

Glass/ceramic body

Large Active Area: 195 x 195 mm?
Picosecond timing resolution

mm spatial resolution

QE >20% w/bi-alkali photocathode
Fused Silica/Borosilicate window
Flat square geometry, high filling factor
Lower Cost per Unit Area

At optimal operation conditions @ 50V extraction voltage, 875V-900V MCP voltage with

Dark count rate 30-60 Hz/cm?

00| _
' | Peak Gain >> 109
ol [| @ low voltages
00l
ol 10°
[1] 4000 8000 12000
600F
50c;
400~
30c;—
200E
1002—

C ! "
64500 65000 65500 66000 66500

time (psec)



* Electronics

* Trigger and Data Acquisition
* Extract the data at high bandwidth from the tracking detectors without adding a prohibitive burden of material due to the large number of drivers and the
power and cooling
* Data volume to be produced will be at PB scale, which will require significant DAQ infrastructure and computation resource.

* Computing and Machine Learning
* Overtaken more traditional approaches based on expert hand-tuning and found natural applications in a variety of areas in particle physics
* Deep Learning for Detector Reconstruction, Data Reconstruction using Deep Neural Networks for LArTPCs, End-to-end Deep Learning for Particle and Event Identification,
Identification of Double-beta Decay Events, Computational and Real-time Inference Challenges
* Deep Learning on FPGAs for CMS Level-1 Trigger and DAQ, Track Reconstruction in High-pileup Collider Environment, Integrated Research Software Training in HEP

DUNE DAQ and trigger high level design simpiified

*  We need a self triggering detector for proton decays, atmospheric neutrinos and
supernova-burst (SNB) neutrinos.

« The SNB physics information is contained in a time window that is tens of seconds long

» High level design of DAQ addresses DUNE physics programs, including trigger
processing system and data buffering (data rate in backup slides)

7 =N 7" ~

( \

Produce and send . : - “
. o ) T re s n| Trigger Processor |, | Global Trigger |
LArPix Raw After Noise Filtering _1-D Deconvolution - zrimitives 244 . ’ : Farm /| External+internal ‘
DUNE Near Detector 750 @ i@ © : 7 JPCand PDS? ) I
MicroBooNE Ay, recovered! //Trixser Primitive \ Trigger algorithm candidate and includes External
40000 A Ge/"*_'f“' A\ (beam) trigger and trigger command distribution
= 30000 Buffers the full data stream
Waits for trigger decision (pre
= : e Detector Module and post trigggger for SNB) &
MicroBooNE tracks ~ £%%° 7~ /- / . 10000 TPC and PDS " Data Buffering :
v 1 1 0 Read-out v Data Selecté
£ - — .
F 200 - Electronics '\_” Event Building with artDaq
-20000 Accept TPC and PDS [Triggered DATA| \
- data from Front-end BACK-END DAQ |
- 0% Electronics Event Building ”[:/"
—-40000 k
e e || A I, \| I 4 NNN18 - Babak Abi ) Bl &5 Ovr Y e
% 30 40 60 80" 0 20 40 60 B0 0 20 40 60 80 0 20 40 60 80~ OXFORD 79

Wire [3 mm spacing]



summary

* Facing to the challenges on neutrino detection
* Large mass
* Low background
* Low energy threshold
* Directional detectors

* Interesting technologies developing and needed for better detectors
* Interesting Precise detectors for short baseline
* Neutrino BSM & Neutrino Detector
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ND280

HE —

« Precise measurement of neutrino oscillations Near Detector (ND)
Hosted at Fermilab

D U N E parameters, particularly 6., violation phase and
determination of mass hierarchy
« Detection of galactic-core supernovae neutrinos

* Nucleon decay
« Search for NSI (Non Standard Interactions)

Far Detector

» Located 4850 ft (1500 m) underground at SURF, enables low-energy and atmospheric neutrino physics

» Four 10 kton (fiducial) LArTPC modules, with single and dual phase detector designs

» Integrated photon detection systems

Single Phase ‘ Dual Phase

Active height 12m Active width 12m
Active length 58 m :\ Active length 60 m
Maximum drift 35m ) | Maximum drift 12m
Wire spacing 5mm .: ' CRP pixel size 3mm
Wire channels 384,000 4 = CRP channels 153,600
Phot. det. ch. 6000 1 l I PMT channels 720

Design drift field: 500 V/cm
Electron drift speed at 500 V/cm: 1.6 mm/us
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ICARUS T600 Detector

e Two identical LArTPC modules
476 tonnes total fiducial mass
Two drift modules per module sharing central cathode
1.5 m drift length
~ 500 V/cm drift field ( ~1.6 mm/us drift velocity)
e Three wire planes with 3 mm pitch (0°, +60° wrt horizontal)
Two induction and one collection (last plane)
~54,000 total wires
o 400 ns sampling time
e VUV scintillation light read out by PMTs coated in

wavelength shifter
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Liquid Argon TPC

Chamged Particles
Cathode =
Plane -
'L-"""/:. s
.,s“‘&ﬁ/
&
«—
Egner #

VI ST M Y K AT IS A 3 e

MBS 2 6 S SRS Y S R S R e e
\ gy

TS S ST
=

SerceWines
uwvy

¥ wire plane waveforms

\\/

¥ wire plare waveforme

JINST 12 P02017 (2017)

"y

ADC (baseline subtracted)

60| — U-wire
—  V-wire
—  Y-wire
a0
Garfield 2D calculation
20 (perpendicular line source)
0
-20
JINST 12
P08003 (2017)
~49%5 10 20 30 a0 50

MicroBooNE TPC

170 tonnes of liquid argon (90 tonnes active).
Cathode at -70 kV. E i ~ 273 V/cm.

Maximum drift length: 2.5 m. Drift time: 2.3 ms.

Three wire planes to reconstruct 3D interaction. 3 mm
wire pitch. 8256 channels.

Two induction planes with 2400 wires each at £ 60°
from vertical. One collection plane with 3456 vertical
wires.

Cold front-end electronics.

2 MHz digitization with warm electronics.

ADC Waveform with 2D MicroBooNE Wire Plane Model

Sample time [us] 35



JUNO 20-inch PMTs selection

W Price e Multiple vendors: {A, B, C, ...}
I enolInEles » Award fractions of certain combination:

5 itt
W ~ommittes Ma Mg Ny b 2N =1

The best combination of different
products was determined by selecting
the maximum total score

S - Z (PiSpeC L PiPT‘iCG 1 Picommittee) . Si . ,'h_
i€{A,B,C,...}

Final Choice in Dec 2015

15k MCP-PMT from NNVT ._
5k dynode-PMT (R12860-50) from Hamamatsu
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Incom MCPs
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Glass capillary arrays functionalized in-house with ALD

Electrode
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Fig. 8: Average gain image “map” (<15% overall
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Figure 2. Secondary electron yield from select thicknesses of
ALD MgO and AL:Os. See Figure 3 for the entire data set

Fig. 9: 20 cm ALD MCP pair background, 500 sec,

0.03 events/cm*/sec!. Overall background ~8x

MgO secondary
electrons

MCPs are a separate product lin

MCP pair. ~7 x 10° gain, 0.7mm inter-MCP gap/200V.

e.

better than standard glass MCPs (less K*0),

Standard dimensions DIA33mm, SQ53mm, SQ60mm, SQ127mm, SQ200mm. Curved MCPs.
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10 - 100 pm

SIPM

* SiPM are matrices of avalanche photo diodes with a common cathode
that are operated in Geiger mode.
* Operates under a substantially lower high voltage than the PMT
* Low power consumption
Not affected by magnetic fields
Robust, since it is not affected by light as much as PMTs
Negligible aging effects, on the contrary to what happens to PMTs
Mass producible and their price is fastly decreasing.
Cross-talk between neighboring photo-cells
After-pulsing.



Superconducting transition edge sensors (TES)

* Atransition-edge sensor is a thermometer made from a superconducting film operated near its transition temperature.

* |t allows to push measurement to the point that quantum effects become the dominant effect limiting the sensitivity of the
technique.

- >

100 pm

One design allows the device to obtain low timing jitter, 18.4 ps, and high absorption efficiency 99.9% at 775 nm.
Challenges : to build larger arrays (tens of thousands of pixels) while striving for an energy resolution allowing for the detection of individual

photons =
,,,‘AbaTdbl;le concept
/ | ,,f/'! / \

Superconducting detector readout technology
/

micron-thick indium / VACUUM
+gold+chromium
composite vacuum |

< seal serves as a J

SIN lag with Nb wire HV feedthrough scintillator
4pmx 240 um y I S
G-APD
0 +HV

frae-space




Organic sensors

* These ultra-thin organic sensors — with carbon instead of silicon as
material converting light into electrical signals — can be applied to
CMOS chips over large and small surfaces, as well as to glass or
flexible plastic films.

* more sensitive to light than the conventional silicon versions, with the
advantage of simple and cheap to produce.

Neganov-Luke light devices

heat bath (y weak thermal coupling

__— tungsten thermometer
| measuring scintillation light

s =+ light absorber

|_— CaWO, target (300g)

|_— tungsten thermometer
measuring total energy input

™~ reflective and
z scintillating
= housing

| AAAA
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e Calorimetry
* Imaging Calorimeters
* Crystal and Homogenous Calorimetry

* Precision Timing for Calorimeters
* Picosecond time resolution.
* Modern image processing technology,
* Low-cost, high-light-yield, fast and radiation-tolerant organic and inorganic scintillators.
e Further advances in Silicon Photomultiplier (SiPM) technology
* Low-cost radiation-tolerant electro-optical transceivers,

* Continued development of GEANT to match the new information being used in
calorimeters



Micro-Pattern Gas Detectors

* MPGD Applications
* Gas Electron Multiplier (GEM), Micro-Mesh Gaseous Structure (MicroMegas,MM), THick GEMs (THGEM), also referred to in the
literature as Large Electron Multi-pliers (LEM), GEM-derived architecture (-RWELL), Micro-Pixel Gas Chamber (-PIC),and integrated pixel
readout (InGrid) are being optimized for a broad range of applications.
Silicon Detectors
* Silicon-based Detectors in Cosmology
* Astronomical CCD cameras
 Silicon-based Detectors for Dark Matter Detection
* CCD arrays to directly search for dark matter
* Germanium CCDs

* Si(Li) detectors to indirectly search for dark matter
* lonization pixel detectors with integrated-circuit readout

* Silicon Detectors for Collider Experiments
* Development of fast timing sensors based on LGADs
* Monolithic Silicon Pixel detectors (MAPS)

* 3D Si sensors
* Substrate engineering
* 3D integrated IC and small pixel sensors

* Direct access to industrial vendors and foundry processes



