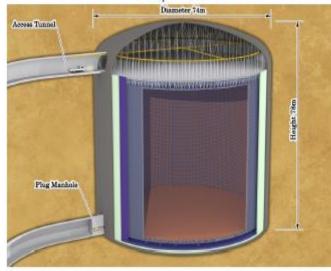
# Korea Neutrino Observatory (KNO) Report

Intae Yu
Sunkyunkwan University
Aug. 30, 2019

Kamiokande (1983-1996) 3000 ton

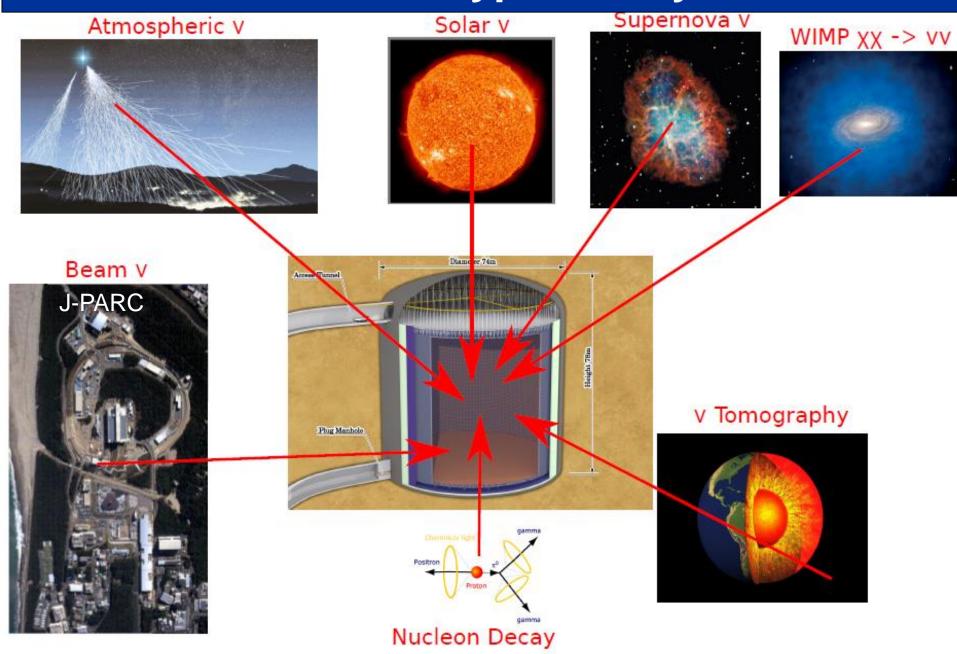



- Neutrinos from SN1987a.
- Atmospheric neutrino deficit.
- Solar neutrinos.

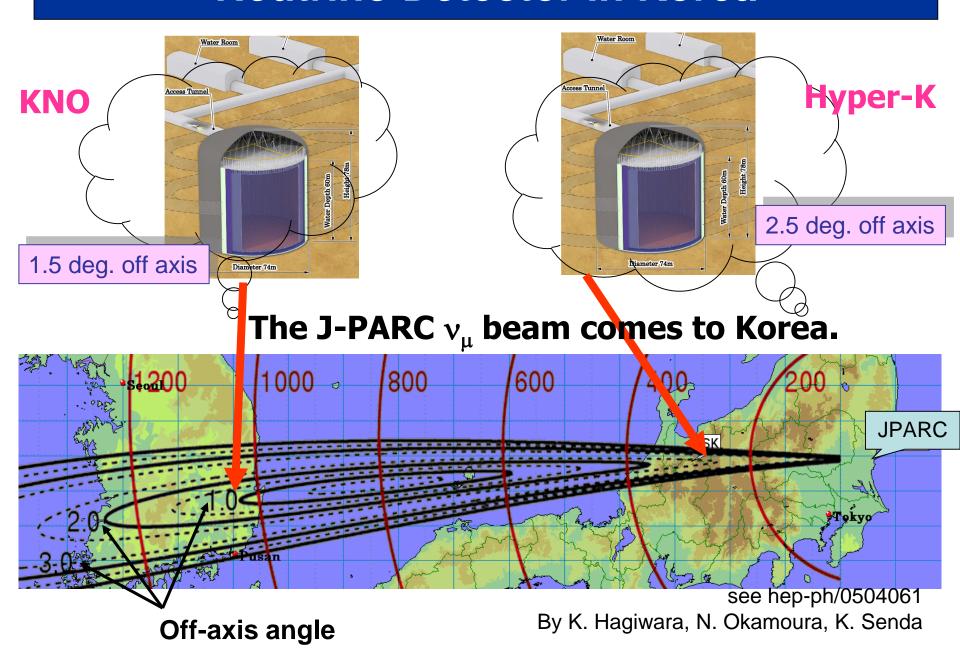
Super-Kamiokande (1996- ) 50,000 ton



- Atmospheric neutrino oscillation.
- Solar neutrino oscillation with SNO.
- Far detector for KEK-PS (K2K) and J-PARC beam (T2K): electron neutrino appearance.
- World leading limit on proton lifetime > 10<sup>34</sup> years.


Hyper-Kamiokande ( $\sim$ 2026- ) 2 $\times$ 260,000 ton



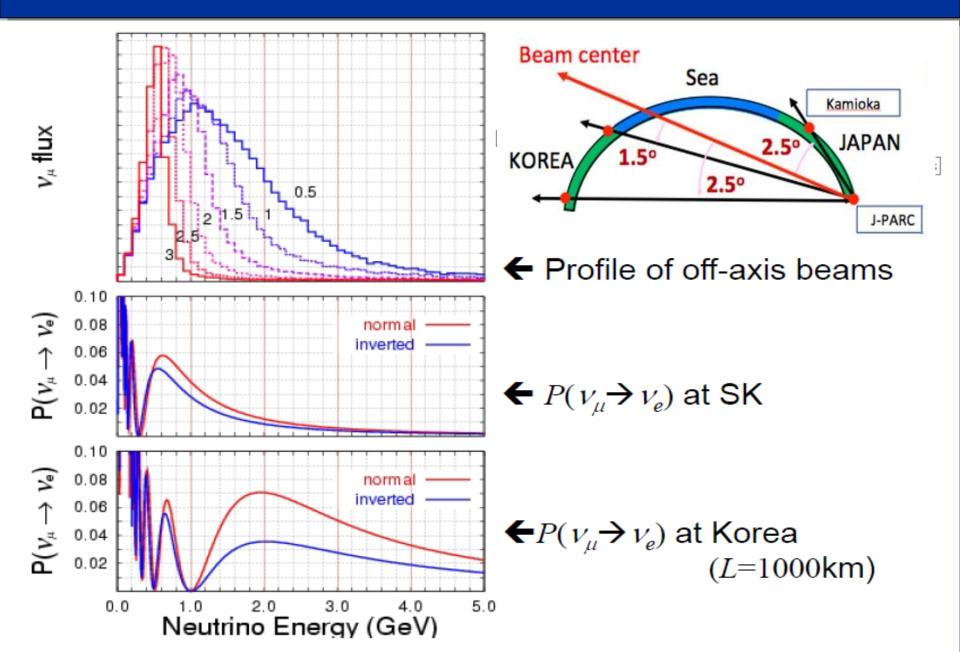

Physics programme:

- Neutrino oscillations: Mass Hierarchy, Leptonic CP violation, θ<sub>23</sub> Octant,...
- Nucleon decay:  $p \rightarrow e^+ \pi^0$ ,  $p \rightarrow K^+ \bar{\nu}$ ,...
- Neutrino astrophysics:
   Solar neutrinos, Supernova neutrinos, WIMP searches

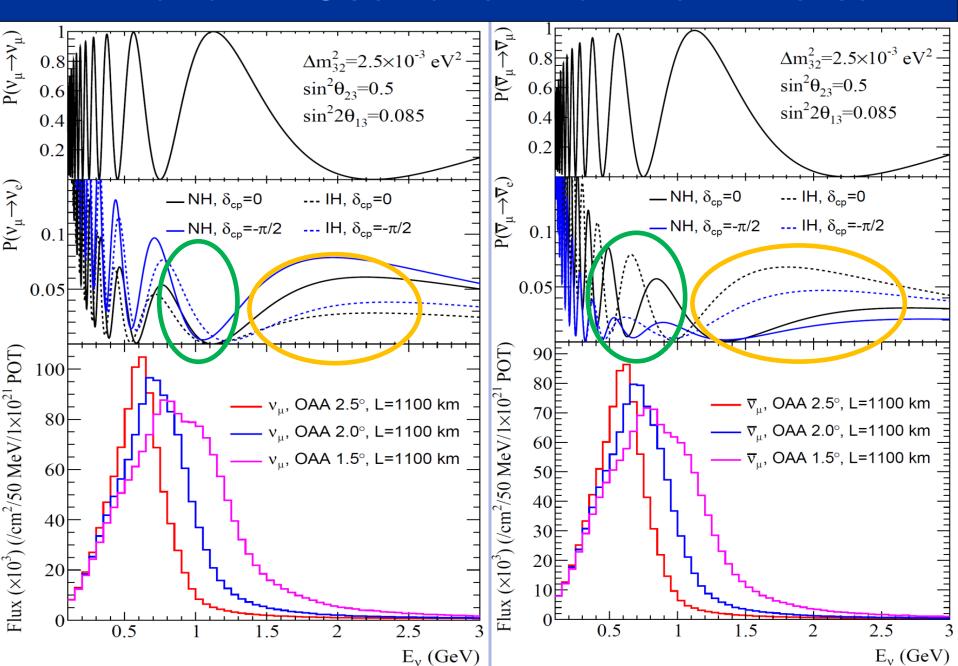
## **Overview of Hyper-K Physics**



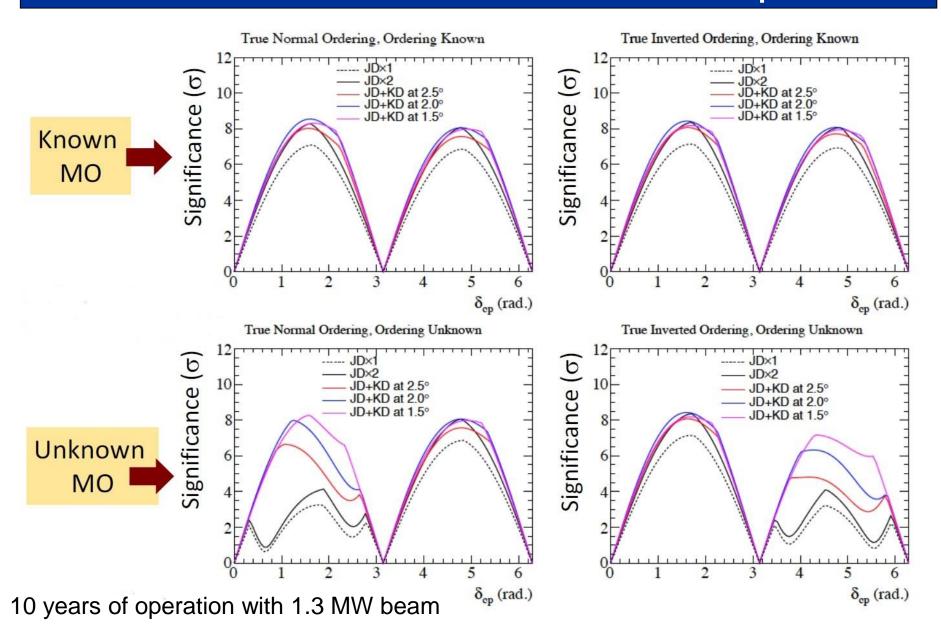
#### **Neutrino Detector in Korea**




#### **Pros and Cons of KNO**

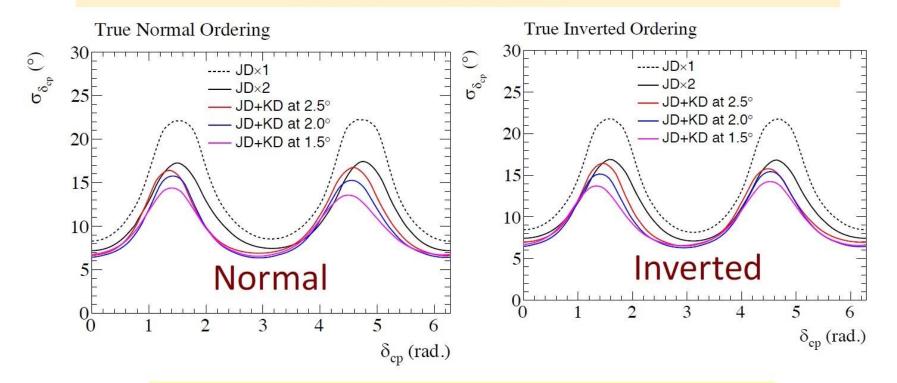

- ☐ Pros
- 1<sup>st</sup> and 2<sup>nd</sup> oscillation maxima at KNO → more sensitive to leptonic CP violation
- Higher mass density and longer baseline (~1000 km)
  - → better determination of neutrino mass hierarchy and better sensitivity to non-standard neutrino interactions
- Larger overburden (~1000 m) → better sensitivity to neutrinos of astronomical origin (solar/SN/galactic..)
- □ Cons

 Neutrino beam flux at KNO is ~ 10 times smaller than HK flux due to longer baseline


#### Neutrino Oscillations in Kamioka & Korea



### 1st and 2nd Oscillation Maxima in Korea

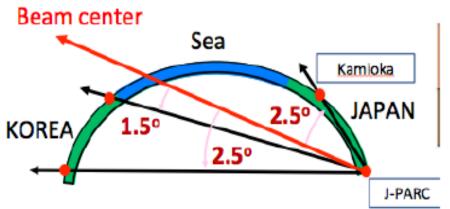


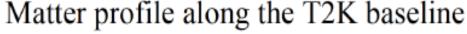

## Physics Potential at KNO: δ<sub>cp</sub>

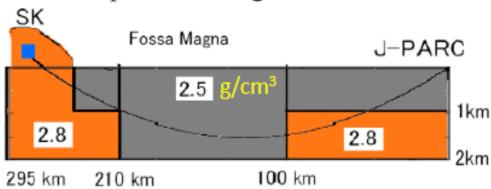


## Physics Potential at KNO: $\delta_{cp}$ Precision

→ Very important for flavor symmetry model of neutrino mixing S. Petcov in ICHEP 2018





At maximum CP violation: JD+KD 1.5°:  $\sigma(\delta_{CP}) = 13^{14}$  degree

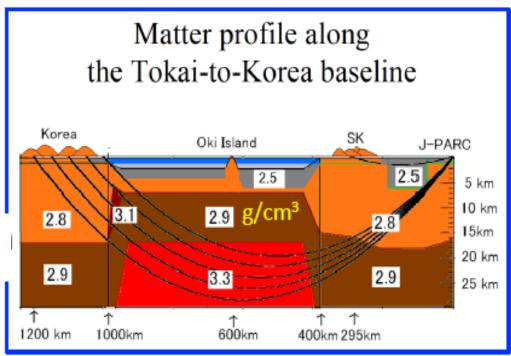

JD x 2 :  $\sigma(\delta_{CP})$  ~ 17 degree

JD x 1 :  $\sigma(\delta_{CP})$  ~ 22 degree

## **Matter Density Profile**



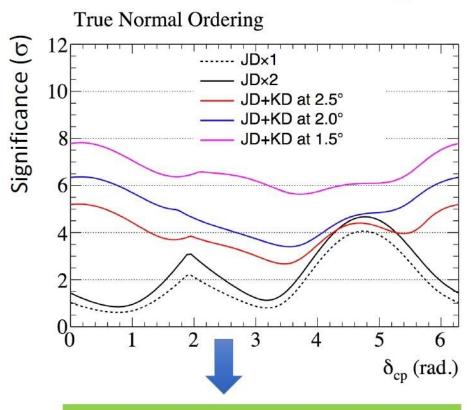


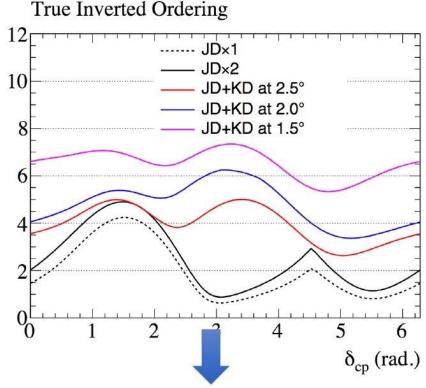



#### Matter density:

$$r_A = 2\sqrt{2}G_F N_e E_\nu / \Delta m_{31}^2$$

#### More matter effects


- Better Measurement of Neutrino Mass Ordering
  - Longer baseline
  - Higher matter density
  - Higher neutrino energy




## Physics Potential at KNO: Mass Ordering

#### Normal

#### Inverted



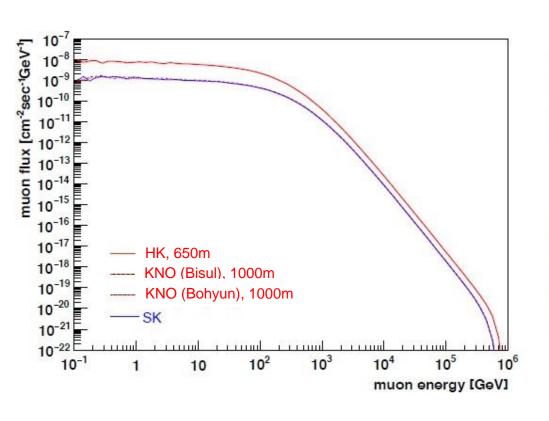


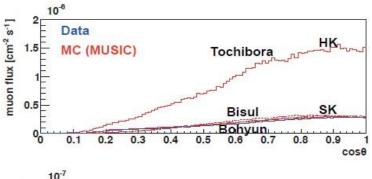
JD+KD 1.5°:  $6 \sim 8 \sigma$  for all  $\delta_{\text{CP}}$ 

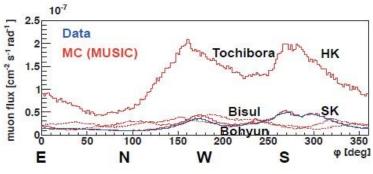
JD x2 :  $1 \sim 4.5 \sigma$  for all  $\delta_{CP}$ 

 $(< 3 \sigma \text{ for most cases})$ 

JD+KD 1.5°: 5.5 ~ 7  $\sigma$  for all  $\delta_{CP}$ 


JD x2 : 1  $\sim$  5  $\sigma$  for all  $\delta_{CP}$ 

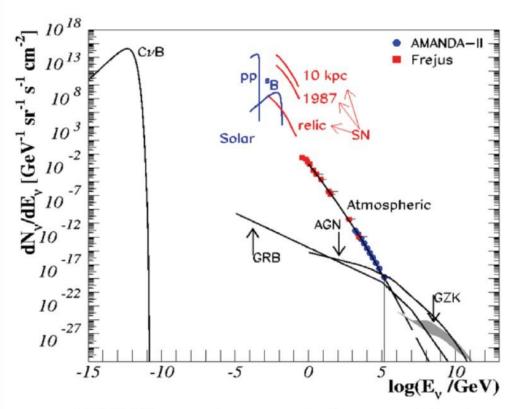

 $(< 3 \sigma \text{ for most cases})$ 


10 years of operation with 1.3 MW beam

## Cosmogenic Muon Flux

- Overburden of KNO site ~ 1000 m (HK: 650 m)
- Muon flux at KNO is 5 times smaller than HK flux → less cosmogenic backgrounds



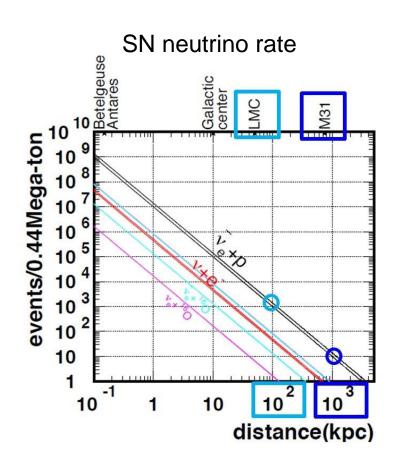


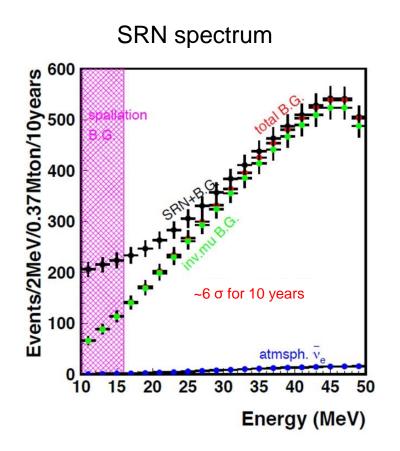



## **Neutrinos of Astronomical Origins**

#### **Neutrino Sources** SN v @ G.C. Solar v (cm<sup>-2</sup> sec<sup>-1</sup> MeV<sup>-1</sup>) Relic SN v FLUX 10-Astrophysical v 10-12 v from DM? 10-16 NEUTRINO ENERGY

#### **Astrophysical Neutrinos**

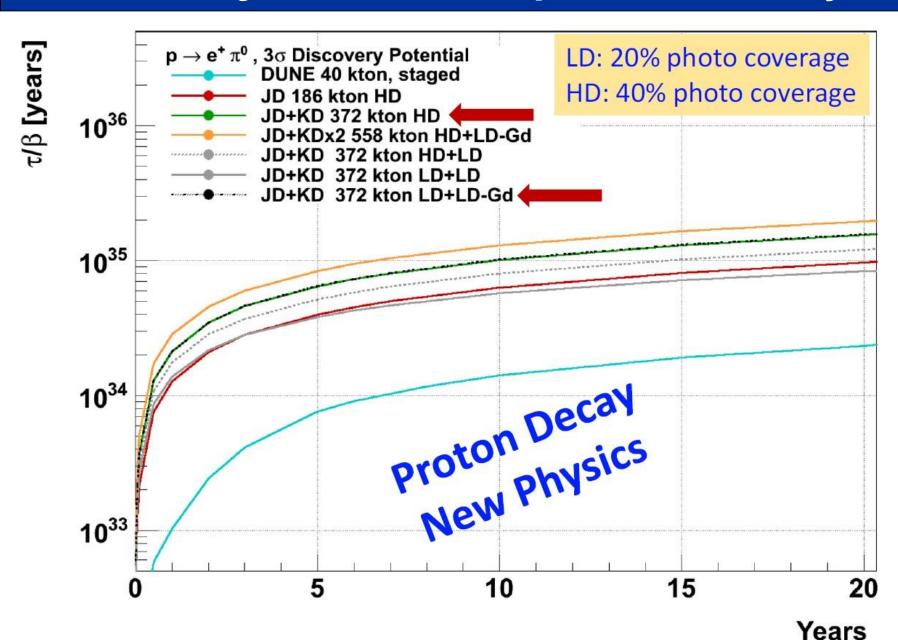




GRB/AGN as neutrino sources in the energetic jet via

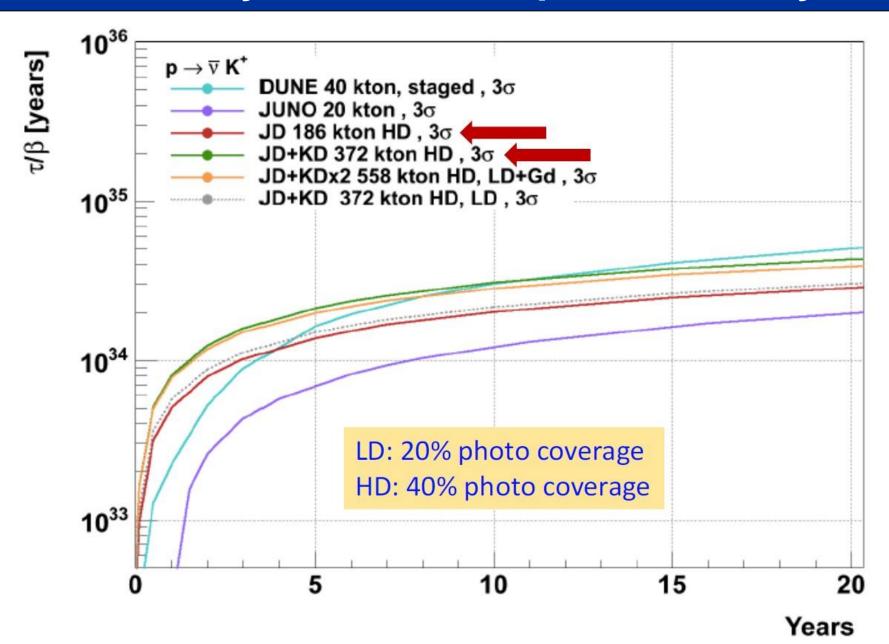
$$p + \gamma 
ightarrow \Delta^{\!+} 
ightarrow \pi^{\!+} + n 
ightarrow e^+ + 
u_e + ar{
u}_\mu + 
u_\mu + n.$$

## **Neutrinos from Super Nova**

- Super Nova Neutrinos (SN)
- Super Nova Relic Neutrinos (SRN)







#### **Neutrinos from Other Astronomical Sources**

- Neutrinos from active galactic nuclei and microquasars
- Neutrinos from interactions of cosmic protons and nuclei in the Galaxy
   Neutrinos from gamma-ray bursts (GRB)
- Neutrinos from clusters of galaxies
- Neutrinos from dark matter decays
- Solar Neutrinos

## Discovery Potential for $p \rightarrow e^+\pi^0$ Decay



## Discovery Potential for p → vK Decay



## **History of KNO/T2HKK**

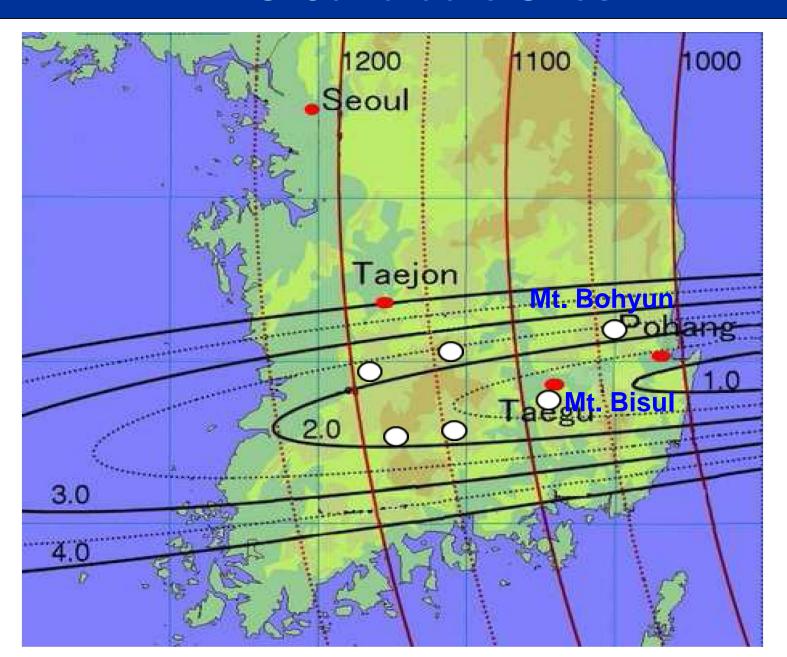
- Oct. 17, 2000: Another far detector using a JHF neutrino beam by S.B. Kim (KOSEF-JSPS Joint Seminar at KIAS)
- 2005/2006/2007: A large Cherenkov detector in Korea using a J-PARC neutrino beam (T2KK) by T. Kajita.
- → 3 joint workshops supported by KOSEF and JSPS
- 2011: Proposal of 0.5 M ton water Cherenkov Hyper-Kamiokande detector at Kamioka (LOI as arXiv:1109.3262 and arXiv:1412.4673v2)
- 2015: Staged construction of two HK detectors of each 0.26
   Mton at Kamioka
- July 10, 2016: The first T2HKK meeting in London
- → present a proposal to the HK collaboration
- → T2HKK working group (S. Seo)

#### **Activities of KNO/T2HKK**

- Sep. 2, 2016: First Workshop on T2HKK in Korea (SNU)
- Oct. 20, 2016: Pioneering Symposium at Korean Physical Society meeting (Gwangju)
- Nov. 2016: A white report on T2HKK released. It was published in Prog. Theor. Exp. Phys. 2018, 063C01.
- Nov. 21-22, 2016: International Workshop on 2<sup>nd</sup> Detector in Korea (SNU)
- Nov. 24, 2017: 1st KNO Workshop (KNU)
- Aug. 21, 2018: 2<sup>nd</sup> KNO Workshop (KASI)
- Nov. 2, 2018: 3<sup>rd</sup> KNO Workshop (KNU)
- Aug. 25, 2019: 4<sup>th</sup> KNO Workshop @ NUFACT 2019 (KNU)

# KNO Workshop: Satellite Meeting of NUFACT 2019 (2019, 8.25)

| 12:00      | Registration: (KNO Workshop)                          |                   |  |  |  |  |
|------------|-------------------------------------------------------|-------------------|--|--|--|--|
|            | 1F Lobby , The Grand Hotel Daegu                      | 12:00 - 12:50     |  |  |  |  |
|            | Opening Remarks                                       | Dongchul Son      |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 12:50 - 13:00     |  |  |  |  |
| 13:00      | Review of Neutrino Experiments in Korea               | Kyung Kwang Joo 🖉 |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 13:00 - 13:30     |  |  |  |  |
|            | Overview of Korean Neutrino Observatory (KNO) Project | Intae Yu 🥝        |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 13:30 - 14:00     |  |  |  |  |
| 14:00      | Hyper-Kamiokande Project                              | Carsten Rott      |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 14:00 - 14:30     |  |  |  |  |
|            | Tea Time                                              |                   |  |  |  |  |
|            | Dynasty hall (2F), The Grand Hotel Daegu              | 14:30 - 14:50     |  |  |  |  |
|            | Particle Physics at KNO                               | Seah-Hee Seo 🥝    |  |  |  |  |
| 15:00      | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 14:50 - 15:20     |  |  |  |  |
|            | Astronomy at KNO                                      | Myeong-Gu Park 🥝  |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 15:20 - 15:50     |  |  |  |  |
| 10/0/52/07 | KNO Detector R&D                                      | HongJoo Kim 🥝     |  |  |  |  |
| 16:00      | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 15:50 - 16:20     |  |  |  |  |
|            | Tea Time                                              |                   |  |  |  |  |
|            | Dynasty hall (2F), The Grand Hotel Daegu              | 16:20 - 16:40     |  |  |  |  |
|            | Panel Discussion for Future Efforts and Plans         |                   |  |  |  |  |
| 17:00      |                                                       |                   |  |  |  |  |
|            | Recency Hall (LL/B1F). The Grand Hotel Daecu          | 16:40 - 17:30     |  |  |  |  |
|            | Regency Hall (LL/B1F), The Grand Hotel Daegu          | 16:40             |  |  |  |  |


#### Korean Efforts on KNO Realization

- 2018. 10. 20: Kick-off Meeting for KNO organization
- Five working groups were formed in the meeting
- Geological surveys were done for KNO candidate sites
- Detector R&D work is in progress
- Several options for KNO detector are being considered
- Discussions with Korean government have been started
- Korean efforts are in very early stage

## Working Groups of KNO Organization

- Government Relations Working Group contact and discussions with government and funding agency
- Detector R&D Working Group photo sensor, water purification, electronics, and etc
- Science Working Group
   particle physics and astronomy subgroups
- Proposal Working Group preparation for KNO proposals
- International Relations Working Group foreign support and participation

### **KNO Candidate Sites**



### **List of KNO Candidate Sites**

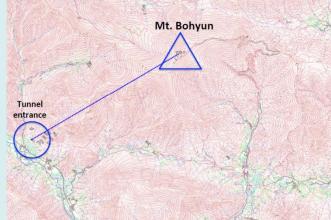
S. B. Kim (SNU)


| Site         | Height (m) | Baseline (km) | Off-axis angle (degree) | Elements of rock           |
|--------------|------------|---------------|-------------------------|----------------------------|
| Mt. Bisul    | 1084       | 1088          | 1.3°                    | Granite porphyry,          |
|              |            |               |                         | Andesitic breccia          |
| Mt. Hwangmae | 1113       | 1140          | 1.8°                    | Flake granite,             |
|              |            |               |                         | Porphyritic gneiss         |
| Mt. Sambong  | 1186       | 1180          | 1.9°                    | Porphyritic granite,       |
|              |            |               |                         | Biotite gneiss             |
| Mt. Bohyun   | 1124       | 1040          | $2.2^{\circ}$           | Granite, Volcanic rocks,   |
|              |            |               |                         | Volcanic breccia           |
| Mt. Minjuji  | 1242       | 1140          | $2.2^{\circ}$           | Granite, Biotite gneiss    |
| Mt. Unjang   | 1125       | 1190          | 2.2°                    | Rhyolite, Granite porphyry |
|              |            |               |                         | Quartz porphyry            |

#### KNO Candidate Sites – Mt. Bisul and Mt. Bohyun

S. B. Kim (SNU)

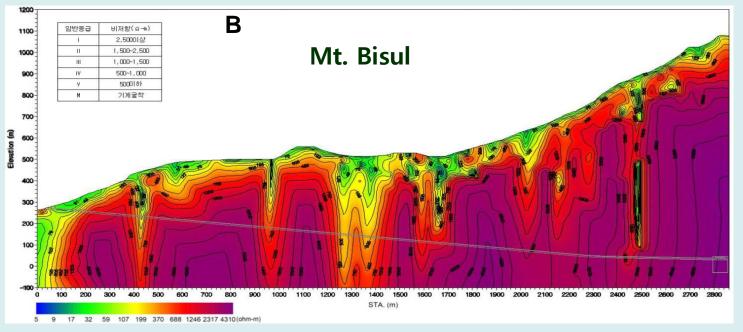
#### Mt. Bisul

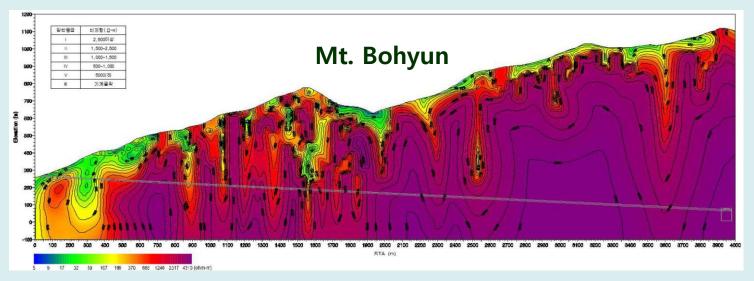







#### Mt. Bohyun



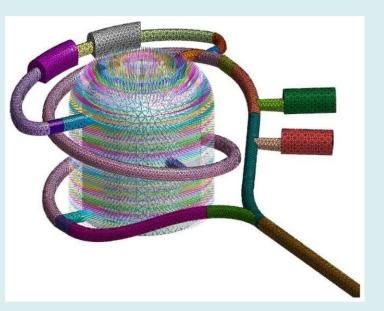



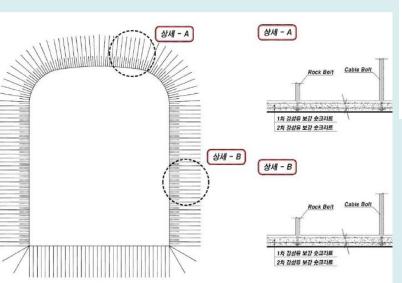


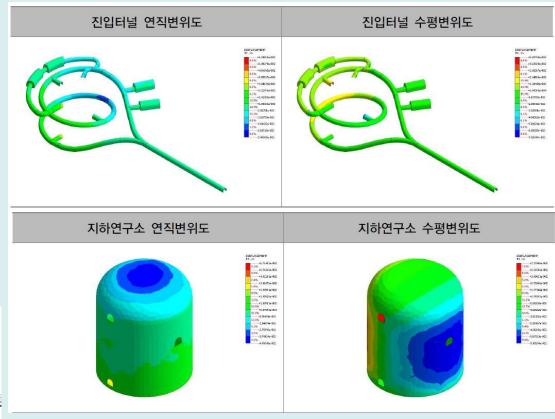

## **Bedrock Investigation of KNO Sites**

S. B. Kim (SNU)







## Conceptual Design of KNO Tunnel




### **Stress Analysis and Reinforcement**

S. B. Kim (SNU)



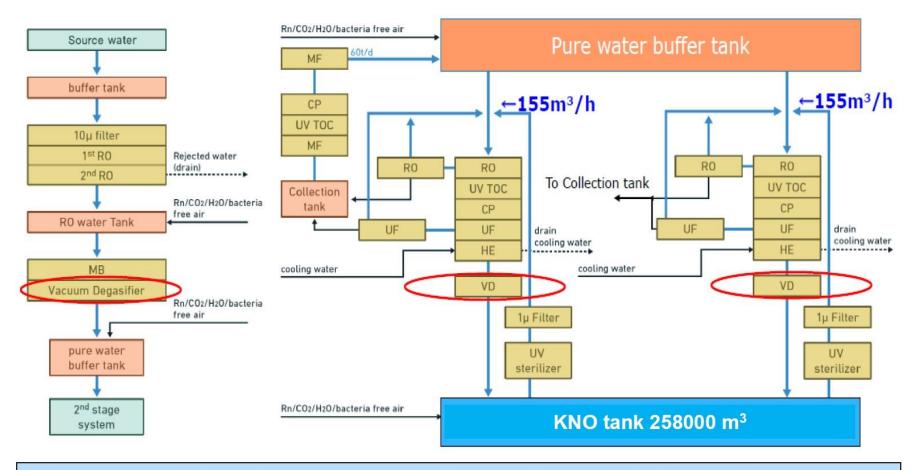




- Construction Period: 4 ~ 5 years
- Cost: much lower than HK

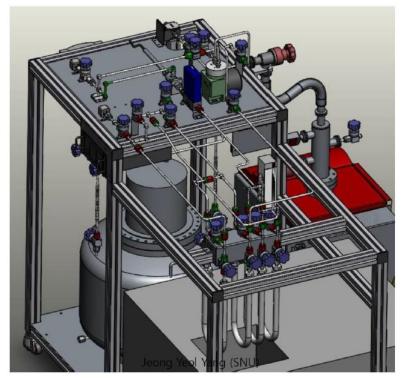
#### **Activities on Detector R&D**

#### **KNO Detector R&D Lists**


- Detector hardware performance simulation
   Detector configuration, energy threshold, energy resolution optimization.
- Detector materials
   Water purification LSC or Gd-doping option
- 3) Photo Detector:
  - PMT or SiPMT
- 4) **Bectronics & DAQ**
- 5) Proto-type
- 6) Tank and mechanical design
- 7) Detector calibration (source, LED, laser)
- 8) Computing, software, DB
- 9) Monitoring, safety etcRadon monitoring system

#### **Activities on Detector R&D: Water Purification**

- Development of water purification system
  - Seoul National University in collaboration with Korean company DICOTECH
  - prototype construction of radon vacuum degasifier
  - development of high-sensitive radon measurement device


- Frontend electronics R&D
  - Korean company NOTICE sells FADC modules
  - preliminary evaluation in progress

## **Design of Water Purification System**



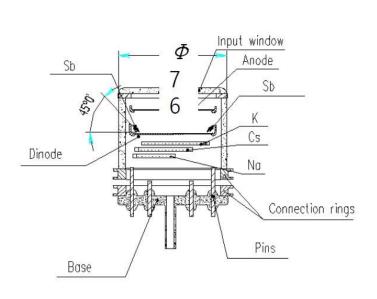
- Cost estimation of water purification system with DICOTECH Co. and SNU (Help provided by HK)
- Initial supply of ultra-pure water: 78 m³/hr, circulation supply: 310 m³

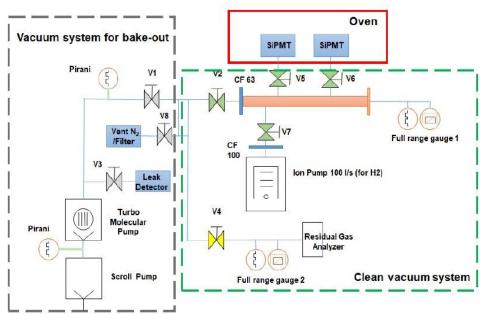
#### **Development of High-sensitive Radon Measurement Device**



Designed radon measurement device at SNU




Assembled radon measurement device at SNU


- Developing a radon removal tower from water with DICOTECH Co. in order to measure radon content in water
- Ready for calibration and radon measurement

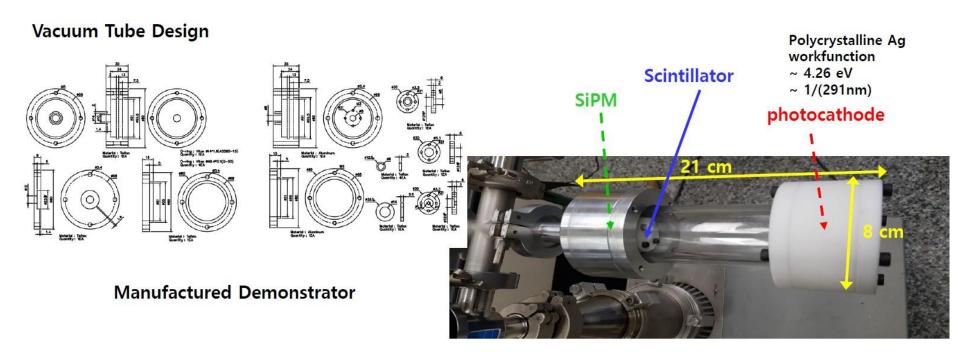
#### **Activities on Detector R&D: Photo sensor**

- Two independent approaches of photo sensor R&D
- Development of conventional PMT
  - University of Seoul in collaboration with Korean company MECARO
  - Work on 3 inch PMT first and move to larger PMT
- Development of Silicon PMT
  - Kyungpook National University in collaboration with Russian group
  - Hybrid PMT using photocathode, scintillator, and SiPM

#### Schematics for photocathode fabrication






Scheme for photocathod fabrication

Schematic for photocathod fabrication setup

Scheme for assembling photocathode, scintillator and SiPM in SiPMT is being designed.

#### **Demonstrator for SiPMT**

- Demonstrator Design & Production
  - Vacuum Tube: ~10<sup>-5</sup> Torr
  - photocathode(Ag), Scintillator & SiPM installed to prove the principle of SiPMT



## **Prospect for KNO**

- KNO has great physics potential and korean physicists are very serious about the project
- Korea has had strong neutrino physics programs such as RENO, NEOS, and foreign experiments (SK, K2K,T2K)
- KNO may be a latecomer compared to Hyper-K and DUNE but KNO has some advantages such as lower cost and shorter construction period
- There will be Korea HEP general meetings to discuss long-range strategies including KNO this year
- The first step will be to get a seed funding from Korean government in 2020.
- Strong international collaboration will be essential especially for detector R&D and construction

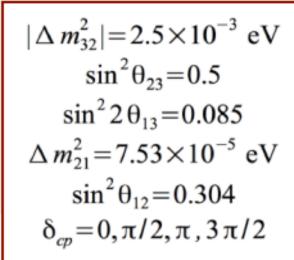
## Summary

- KNO greatly enhances physics sensitivities in the measurements of leptonic CP violation, mass ordering, proton decay, NSI, and many others
- KNO also serves as a powerful neutrino telescope for multi-messenger astronomy
- KNO organization and working groups are formed and active
- Efforts on detector R&D and science are in progress
- KNO can be a flagship project for Korean HEP for the next 10 years

## Thank you

## BACK UP

#### **Activities on KNO Science**


- Particle physics subgroup identifies potential KNO physics topics through workshops and seminars
  - organize Korean neutrino meetings
  - carry out sensitivity studies using simplified simulations (published in PTEP 2018)

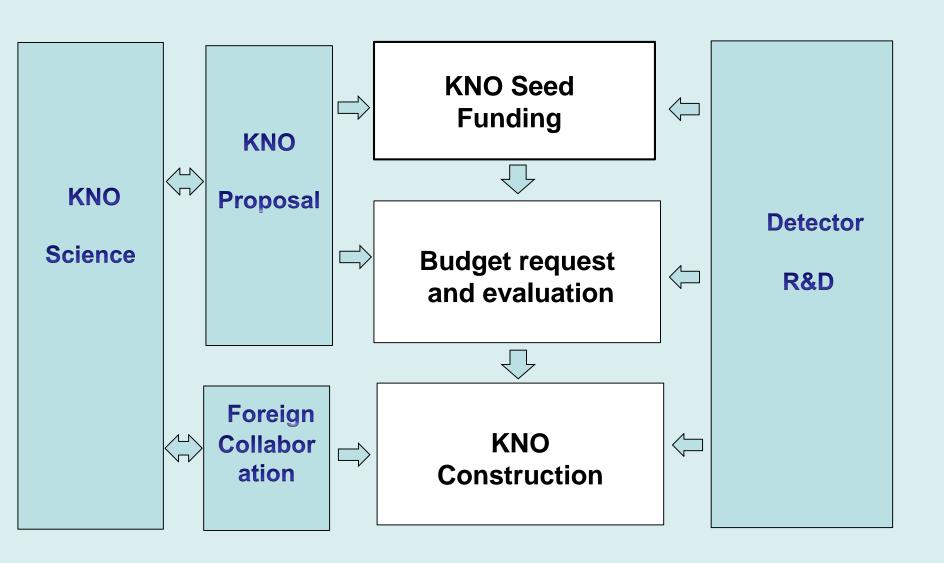
- Astronomy subgroup is preparing for a white paper on KNO astronomy
  - list of potential KNO astronomy topics
  - emphasis on multi-messenger astronomy using neutrinos

## **Physics Sensitivity Studies**

#### Simulation parameters

- 2.7x10<sup>22</sup> POT with  $v : \overline{v} = 1 : 3$  operation ratio
  - → 10 years of operation with 1.3 MW beam
- 187 kton fiducial volume (compared to 22.5 kton for SK)
- Baseline to Korea is 1100 km
- Off-axis beam: 1.3°, 1.5°, 2.0°, 2.5°
- Oscillation parameters:




## **Systematic Error Model**

 Use a simplified error model in the simulation

 Total error is slightly larger than those in the Hyper-K design report. (KEK Preprint 2016-21)

|                                                                                                      | Percent Error (%) |      |      |      |      |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------|------|------|------|------|--|--|--|
| Error Source                                                                                         | ν 1Rμ             |      |      |      |      |  |  |  |
| Error Source $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                  |                   |      |      |      |      |  |  |  |
| $\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$                                    | 0.00              | 0.00 | 2.10 | 1.68 | 3.12 |  |  |  |
| $\frac{\sigma_{e} / \sigma_{\nu_{\mu}}, \sigma_{\nu_{e}} / \sigma_{\nu_{\mu}}}{\text{Energy Scale}}$ | 0.02              | 0.02 | 0.01 | 0.01 | 0.01 |  |  |  |
| Matter Density                                                                                       | 0.04              | 0.08 | 0.43 | 0.09 | 0.53 |  |  |  |
| $\frac{NC\pi^{+} \text{ Bgnd.}}{\text{NC}\pi^{+}}$                                                   | 1.28              | 1.25 | 0.00 | 0.00 | 0.00 |  |  |  |
| $\nu_e \& NC\pi^0 Bgnd.$                                                                             | 0.00              | 0.00 | 1.32 | 1.41 | 1.88 |  |  |  |
| CC non-QE Fraction                                                                                   | 2.76              | 1.88 | 1.98 | 1.29 | 2.35 |  |  |  |
| Extrapolation                                                                                        | 2.70              | 2.60 | 2.44 | 3.06 | 1.95 |  |  |  |
| Far Detector Model                                                                                   | 2.64              | 2.64 | 2.08 | 2.08 | 0.00 |  |  |  |
| Total                                                                                                | 4.69              | 4.16 | 4.54 | 4.47 | 4.86 |  |  |  |
|                                                                                                      | OAA=2             |      |      |      | 1.00 |  |  |  |
| $\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$                                    | 0.00              | 0.00 | 2.01 | 1.67 | 3.07 |  |  |  |
| $\frac{\sigma_{\nu_e}/\sigma_{\nu_\mu}, \sigma_{\nu_e}/\sigma_{\nu_\mu}}{\text{Energy Scale}}$       | 0.02              | 0.01 | 0.01 | 0.01 | 0.01 |  |  |  |
| Matter Density                                                                                       | 0.02              | 0.06 | 0.55 | 0.12 | 0.67 |  |  |  |
| $\frac{NC\pi^{+} \text{ Bgnd.}}{}$                                                                   | 1.47              | 1.29 | 0.00 | 0.00 | 0.00 |  |  |  |
| $\nu_e$ & NC $\pi^0$ Bgnd.                                                                           | 0.00              | 0.00 | 1.26 | 1.29 | 1.76 |  |  |  |
| CC non-QE Fraction                                                                                   | 0.87              | 0.82 | 1.24 | 0.76 | 1.51 |  |  |  |
| Extrapolation                                                                                        | 2.68              | 2.68 | 2.38 | 3.00 | 1.92 |  |  |  |
| Far Detector Model                                                                                   | 2.64              | 2.64 | 2.08 | 2.08 | 0.00 |  |  |  |
| Total                                                                                                | 3.89              | 3.83 | 4.18 | 4.27 | 4.39 |  |  |  |
|                                                                                                      | OAA=1             |      |      |      | 1.00 |  |  |  |
| $\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$                                    | 0.00              | 0.00 | 1.72 | 1.41 | 2.67 |  |  |  |
| $\frac{\sigma_{\nu_e}/\sigma_{\nu_\mu}, \sigma_{\nu_e}/\sigma_{\nu_\mu}}{\text{Energy Scale}}$       | 0.01              | 0.01 | 0.01 | 0.01 | 0.01 |  |  |  |
| Matter Density                                                                                       | 0.01              | 0.06 | 0.24 | 0.28 | 0.53 |  |  |  |
| $\frac{NC\pi^{+} \text{ Bgnd.}}{}$                                                                   | 1.61              | 1.30 | 0.00 | 0.00 | 0.00 |  |  |  |
| $\nu_e \& NC\pi^0 Bgnd.$                                                                             | 0.00              | 0.00 | 1.42 | 1.37 | 1.93 |  |  |  |
| CC non-QE Fraction                                                                                   | 0.44              | 0.30 | 0.52 | 0.37 | 0.75 |  |  |  |
| Extrapolation                                                                                        | 2.67              | 2.60 | 2.23 | 2.88 | 1.84 |  |  |  |
| Far Detector Model                                                                                   | 2.64              | 2.64 | 2.08 | 2.08 | 0.00 |  |  |  |
| Total                                                                                                | 3.83              | 3.81 | 3.84 | 4.11 | 3.91 |  |  |  |
| OAA= $2.5^{\circ}$ , $L = 295 \text{ km}$                                                            |                   |      |      |      |      |  |  |  |
| $\overline{\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}}$                         | 0.01              | 0.00 | 2.44 | 1.82 | 3.53 |  |  |  |
| Energy Scale                                                                                         | 0.04              | 0.03 | 0.42 | 0.63 | 0.21 |  |  |  |
| Matter Density                                                                                       | _                 | _    | _    | _    |      |  |  |  |
| $\frac{NC\pi^{+} \text{ Bgnd.}}{}$                                                                   | 2.33              | 1.79 | 0.00 | 0.00 | 0.00 |  |  |  |
| $\nu_e \& NC\pi^0 Bgnd.$                                                                             | 0.00              | 0.00 | 0.94 | 1.22 | 1.51 |  |  |  |
| CC non-QE Fraction                                                                                   | 1.68              | 1.72 | 2.07 | 1.00 | 2.25 |  |  |  |
| Extrapolation                                                                                        | 2.60              | 2.56 | 2.51 | 3.05 | 1.96 |  |  |  |
| Far Detector Model                                                                                   | 2.64              | 2.64 | 2.08 | 2.08 | 0.00 |  |  |  |
| Total                                                                                                | 4.13              | 4.15 | 4.71 | 4.47 | 4.90 |  |  |  |
| OAA= $2.5^{\circ}$ , $L=295$ km (Hyper-K Design Report)                                              |                   |      |      |      |      |  |  |  |
| Total 3.6 3.6 3.2 3.9 -                                                                              |                   |      |      |      |      |  |  |  |
| 0.0 0.0 0.2 0.0                                                                                      |                   |      |      |      |      |  |  |  |

## **KNO Strategy**

