

DongHa Lee for the RENO Collaboration Seoul National University

NuFact 2019

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(8 institutions and 40 physicists)

- Chonnam National University
- Dongshin University
- GIST
- KAIST
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

■ Total cost: \$10M

Start of project : 2006

 The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

New RENO Results

■ Precise measurement of $|\Delta m_{ee}|^2$ and θ_{13} using ~2200 days of data (Aug. 2011 – Feb. 2018)

"Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO" → Published in PRL (Phys. Rev. Lett. 121, 201801 (2018))

■ Fuel-composition dependent reactor antineutrino yield → "Fuel-composition dependent reactor antineutrino yield and spectrum at RENO" → Published in PRL (Phys. Rev. Lett. 122, no.23, 232501 (2019))

■ Independent measurement of $|\Delta m_{ee}|^2$ and θ_{13} with delayed n-H signals

Measured Spectra of IBD Prompt Signal

Clear excess at 5 MeV

In 2014, RENO showed the 5 MeV excess comes from reactors.

Far/Near Shape Analysis

Energy-dependent disappearance of reactor antineutrinos

$$\sin^2 2\theta_{13} = 0.0896 \pm 0.0048 \text{(stat.)} \pm 0.0047 \text{(syst.)}$$
 (± 7.6%)

$$|\triangle m_{ee}^2| = 2.68 \pm 0.12 \text{(stat.)} \pm 0.07 \text{(syst.)} \ (\times 10^{-3} \text{ eV}^2)$$
 (± 5.2 %)

Results of θ_{13} and $|\Delta m^2_{ee}|$

$$\sin^2 2\theta_{13} = 0.0896 \pm 0.0048 (\text{stat.}) \pm 0.0047 (\text{syst.})$$

$$|\triangle m_{ee}^2| = 2.68 \pm 0.12 \text{(stat.)} \pm 0.07 \text{(syst.)} (\times 10^{-3} \text{ eV}^2)$$

Observed L/E Dependent Oscillation

$$P(\overline{n}_e \to \overline{n}_e) \approx 1 - \sin^2 2q_{13} \sin^2 \left(Dm_{ee}^2 \frac{L}{4E_n} \right)$$

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

Motivation for the study of fuel composition dependent reactor antineutrino yield

Reactor Antineutrino Anomaly

- ~6% deficit of measured reactor neutrino flux compared to the prediction with new predicted flux evaluation in 2011 by Huber and Mueller.
- Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos.

The possibility that reactor anomaly is due to miscalculation of one or more of the ²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu antineutrino fluxes is investigated by observing fuel-composition dependent variation of reactor antineutrino yield and spectrum.

- C. Giunti, Phys. Lett. B 764, 145 (2017)
- F. P. An et al. (Daya Bay Collaboration), PRL 118, 251801 (2017)
- RENO Collaboration, Phys. Rev. Lett. 122, no.23, 232501 (2019)

Evolution of Fuel Composition at RENO

Effective fission fraction of ²³⁵U (weighted by each reactor's thermal power and baseline)

8 groups of near IBD samples with equal statistics according to ²³⁵U isotope fraction

$$F_i(t) = \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_r(t)f_{i,r}(t)}{L_r^2\bar{E}_r(t)} / \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_r(t)}{L_r^2\bar{E}_r(t)}$$

Fuel-Composition Dependent Reactor Neutrino Yield

Measured total averaged IBD yield per fission (\overline{y}_f)

= $(5.84 \pm 0.13) \times 10^{-43}$ cm²/fission

Ratio (Data /H-M model) for the total average IBD yield

= $0.940 \pm 0.021 \rightarrow (6.0 \pm 2.1)\%$ deficit

Averaged IBD yield per fission (\overline{y}_f) vs $\overline{F}_{i,j}$

- → slope means different neutrino yield for each isotope
- \rightarrow rules out the no fueldependent variation at **6.6** σ

The scaled model indicates the reactor antineutrino anomaly

12

Measurement of y_{235} and y_{239}

The best-fit measured yields per fission of ²³⁵U and ²³⁹Pu

The best-fit values

$$y_{235}$$
 = 6.15 ± 0.19 (2.8 σ deficit)
 y_{239} = 4.18 ± 0.26 (0.8 σ deficit)

H-M model

$$y_{235}$$
 = 6.70 ± 0.14
 y_{239} = 4.38 ± 0.11

Reevaluation of the y_{235} may **mostly solve** the reactor antineutrino **anomaly.**But 239 Pu is **not entirely** ruled out as a possible source of the anomaly.

Correlation of 5 MeV excess with fuel ²³⁵U

2.9σ indication of 5 MeV excess coming from ²³⁵U fuel isotope fission!!

of reactor cycle)

of reactor cycle)

n-H IBD Analysis

Motivation:

- 1. Independent measurement of θ_{13} and $|\Delta m_{ee}|^2$.
- 2. Consistency and systematic check on reactor neutrinos.

θ₁₃ Measurement with n-H

$$\sin^2 2\theta_{13} = 0.085 \pm 0.008 \text{(stat.)} \pm 0.012 \text{(syst.)}$$

θ₁₃ and |Δm²_{ee}| Measurement with n-H

$$\sin^2 2\theta_{13} = 0.094^{+0.012}_{-0.010}(\text{stat}) \pm 0.009(\text{syst})$$

$$|\Delta m_{ee}^2| = 2.53_{-0.28}^{+0.25} (\text{stat.})_{-0.16}^{+0.13} (\text{syst.}) (\times 10^{-3} \text{eV}^2)$$

Summary

■ More precise measurement of $|\Delta m_{ee}|^2$ and θ_{13} using 2200 days of data

```
\sin^2 2\theta_{13} = 0.0896 \pm 0.0048 (\text{stat.}) \pm 0.0047 (\text{syst.}) \pm 0.0068 7.6 % precision |\triangle m_{ee}|^2 = 2.68 \pm 0.12 (\text{stat.}) \pm 0.07 (\text{syst.}) (\times 10^{-3} \text{ eV}^2) \pm 0.14 5.2 % precision
```

- Observation of fuel composition dependent IBD yield at 6.6σ CL
- Measured IBD yield per fission (10⁻⁴³ cm²)
 - ^{235}U : 6.15 ± 0.19 (smaller than the H-M prediction at $^{2.8}\sigma$)
 - ²³⁹Pu: 4.18 \pm 0.26 (smaller than the H-M prediction at 0.8σ)
- First hint for 2.9σ correlation between 5 MeV excess and ²³⁵U fission fraction
- Measurement of $|\Delta m_{ee}|^2$ and θ_{13} using n-H IBD analysis

Thanks for your attention!

RENO Detector

■ 354 ID +67 OD 10" PMTs

■ Target: 16.5 ton Gd-LS, R=1.4m, H=3.2m

■ Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m

■ Buffer: 65 ton mineral oil, R=2.7m, H=5.8m

■ Veto: 350 ton water, R=4.2m, H=8.8m

RENO Data-taking Status

- Data taking began on Aug. 1, 2011 with both near and far detectors.
 (DAQ efficiency: ~95%)
- A (220 days): First θ₁₃ result
 [11 Aug, 2011~26 Mar, 2012]
 PRL 108, 191802 (2012)
- B (~500 days): Recent results
 Rate+shape analysis (θ₁₃ and |Δm_{ee}² |)
 [11 Aug, 2011~21 Jan, 2013]
- → PRL 116, 211801 (2016) accepted to PRD (arXiv:1610.04326)
- C (~2200 days): New results
 Rate+shape analysis (θ₁₃ and |Δm_{ee}² |)
 [11 Aug, 2011~7 Feb, 2018]
 → submitted to PRL (arXiv:1806.00248)

Measured Spectra of IBD Prompt Signal

Clear excess at 5 MeV

Near Live time = 1807.88 days # of IBD candidate = 850,666 # of background = 17,233 (2.0 %) Far Live time = 2193.04 days # of IBD candidate = 103,212 # of background = 4,879 (4.8 %)

Correlation of 5 MeV Excess with Reactor Power

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

IBD Yield Variation of 5 MeV Excess Region

Ratio of IBD yield per fission between "5 MeV excess region" and "total" → Weak indication of enhanced yield in 5 MeV excess region due to ²³⁵U isotope fraction increase....

Measurement of Absolute Reactor Neutrino Flux

Cross section calculation

- Vogel 84 formalism
- $\tau_n = 880.2 \text{s} \text{ (PDG2017)}$

Data / Prediction, RENO 2200 days at near detector

0.924 +- 0.018 (for Huber + Mueller model)

0.966 +- 0.019 (for ILL + Vogel model)

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

Unfolded Reactor Antineutrino Spectrum

Spectral comparison

* MC is normalized to data in the region excluding $3.6 < E_p < 6.6$ MeV

Unfolding using iterative method in RooUnfold