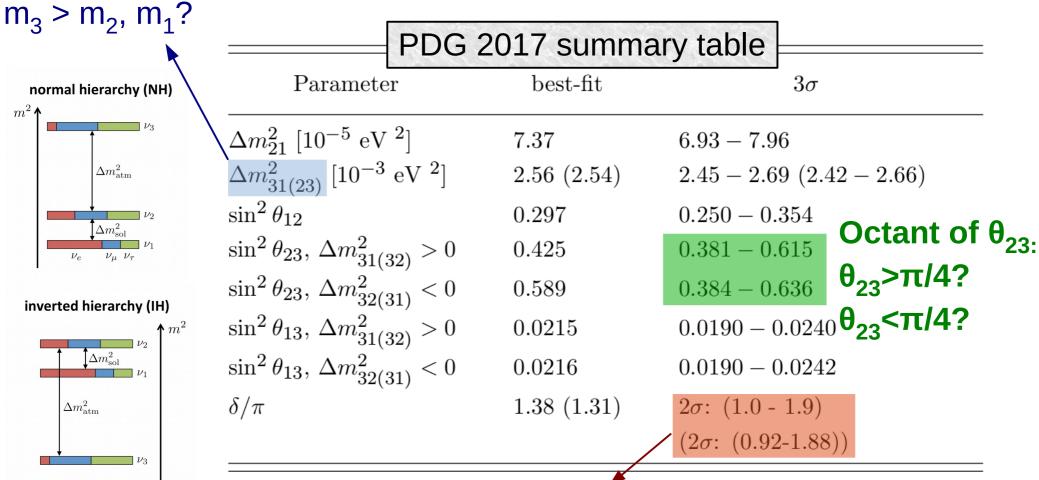
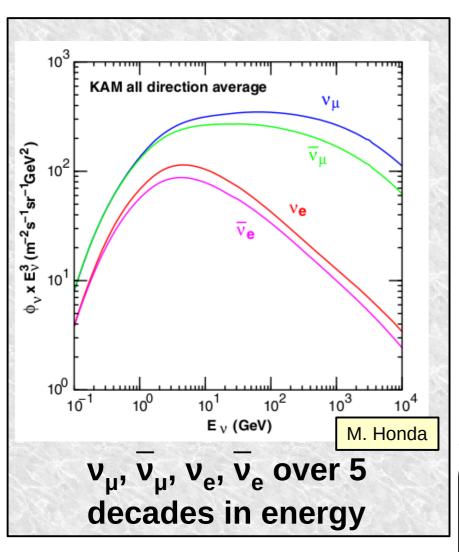
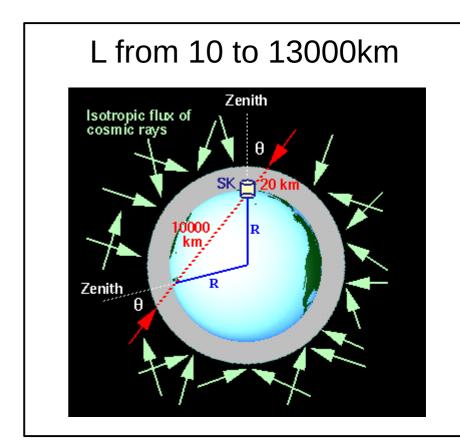
Atmospheric neutrino results from Super-Kamiokande


C. Bronner Aug. 27th, 2019

Neutrino oscillation Open questions

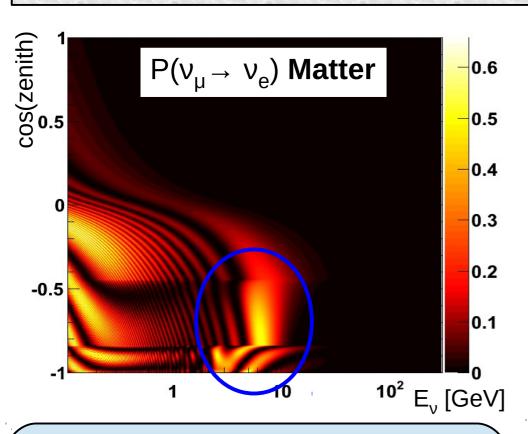


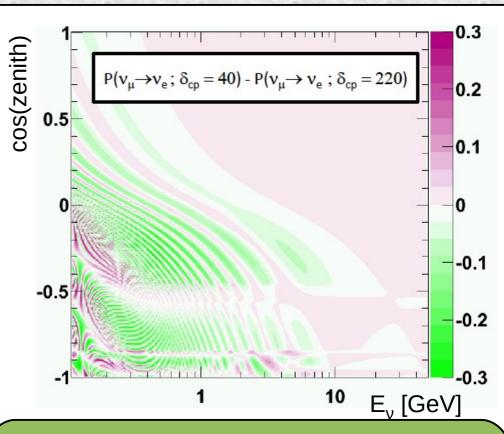


Violation of CP symmetry in neutrino oscillations?

Degeneracies between those 3 questions

Atmospheric neutrinos Interest for oscillation measurements



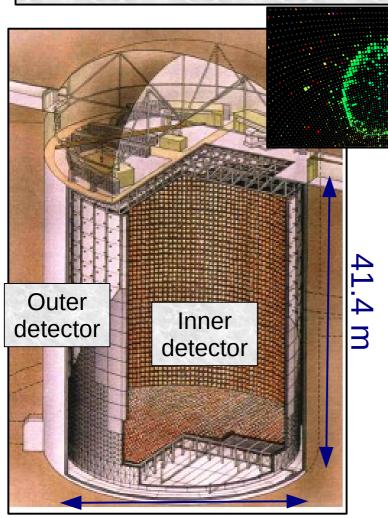


- Large range of neutrino energies and propagation lengths
- Oscillations dominated by $\nu_{\mu} \rightarrow \nu_{\tau}$
- Large statistics allow to study subdominant effects

Atmospheric neutrinos Interest for oscillation measurements

Ability to study the open questions comes mainly from appearance channels $\nu_{\mu}\!\to\!\,\nu_{e}$ and $\overline{\nu}_{\mu}\!\to\!\,\overline{\nu}_{e}$

Resonance from matter effects

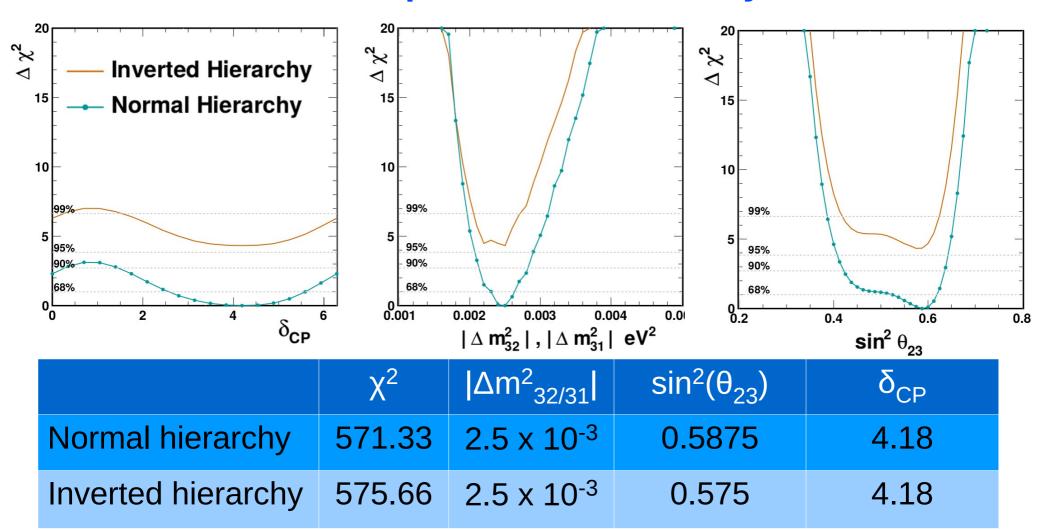

- Only for v in NH and \overline{v} in IH
 - → sensitive to the mass hierarchy
- Size of the effect depends on $\sin^2(\theta_{23})$
 - \rightarrow sensitive to θ_{23} octant

δ_{CP} modifies the oscillation patterns

- Sensitivity from number of sub-GeV ν_e events
- More ν_e appearance events for δ~220-240°, and less for δ~40-45°

Super-Kamiokande experiment

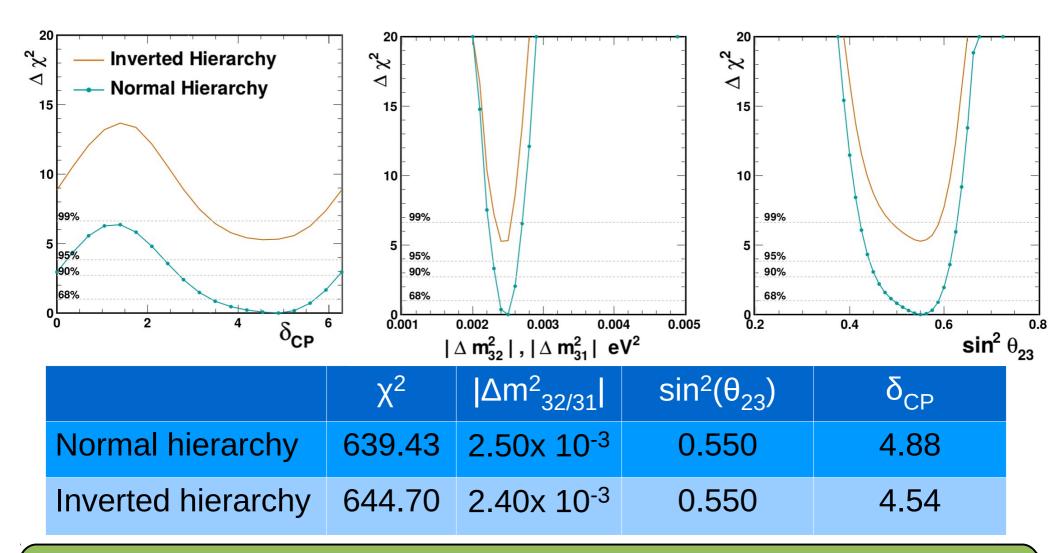
- 50 kt (22.5 kt fiducial) water Cherenkov detector
- > 1000m overburden
- Operational since 1996


39.3 m

Wide physics program:

- Atmospheric neutrinos
- Solar neutrinos
- Supernova neutrinos
- Proton decay
- Dark matter indirect detection

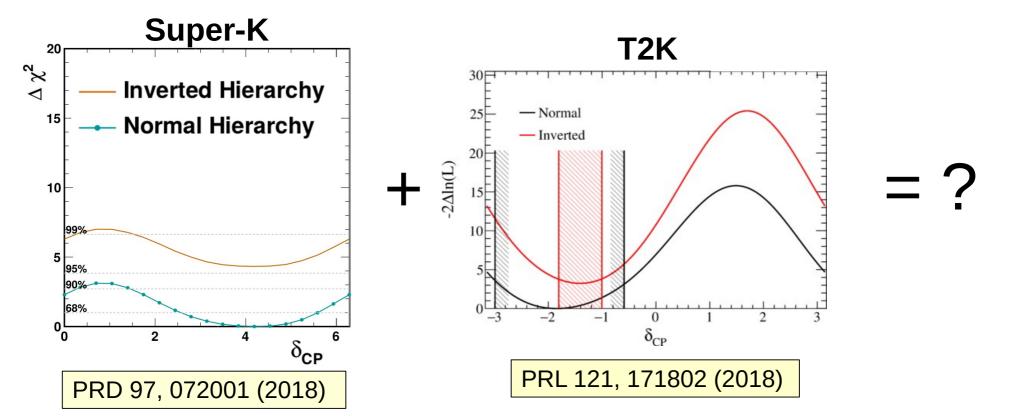
- Sood separation between μ^{\pm} and e^{\pm} (separate ν_{μ} and ν_{e} CC interactions)
 - → Less than 1% mis-PID at 1 GeV
- No magnetic field: cannot separate ν and ν on an event by event basis
- Only detects charged particles above Cerenkov threshold and photons
 - → limitation for energy and directional reconstruction


Current SK I-IV official results Atmospheric neutrino only

- > Preference for the normal hierarchy: $\chi^2(NH)-\chi^2(IH)=-4.33$
- P-value for this $\Delta \chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.027 for true IH

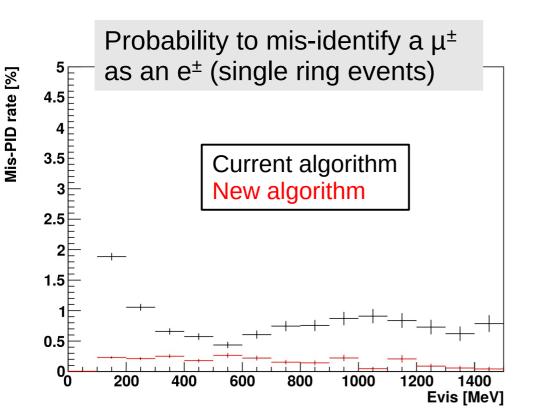
 PRD 97, 072001 (2018)

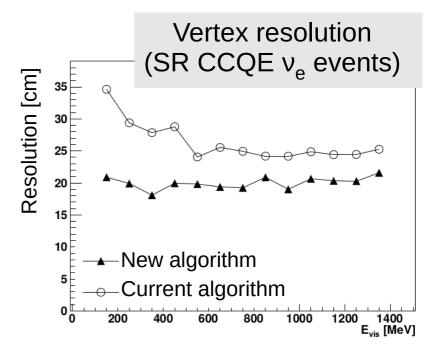
Current SK I-IV official results SK Atmo + reactor + <u>model</u> of T2K

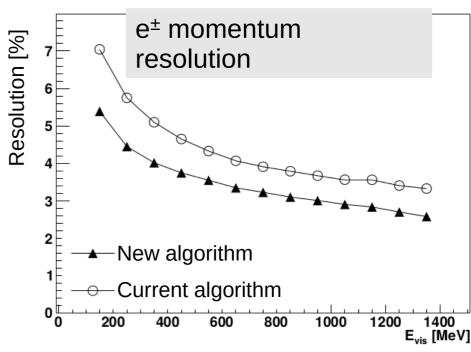


- > Slightly stronger preference for the NH: χ^2 (NH)- χ^2 (IH)=-5.27
- P-value for this $\Delta \chi^2$ (true values of the parameters corresponding to the NH best fit point) is 0.023 for true IH PRD 97, 072001 (2018)

Towards a real T2K and SK joint fit


- Results on previous slides were <u>not</u> a joint analysis between the T2K and SK collaborations
- Used SK tools to build a model of T2K and fit data based on publicly available information (from PRD 91, 072010 (2015), not most recent T2K analysis and data)

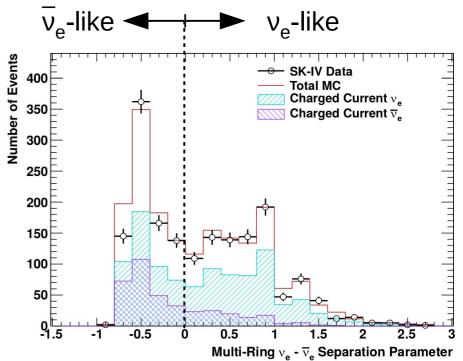

The Super-K and T2K collaborations have now formally agreed to pursue a joint analysis of their data sets



New reconstructrion algorithm in SK

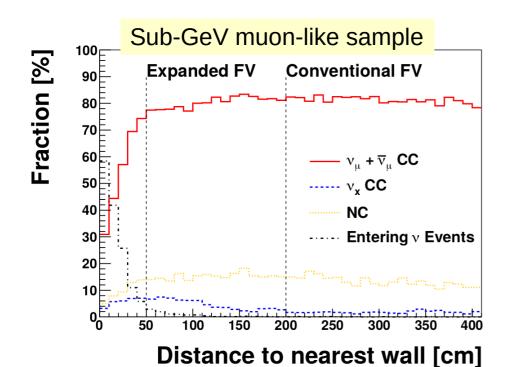
- New reconstruction algorithm developed for Super-K events "fiTQun"
- Provides improved performance for vertex and momentum resolution, as well as PID
- Used for T2K oscillation analysis since 2017 but not in Super-K analysis shown in previous slides

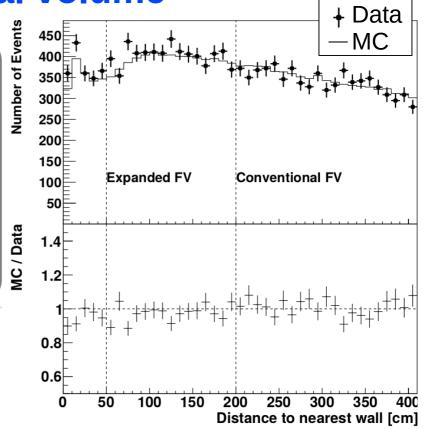
New reconstructrion algorithm in SK Separation of v_e and v_e events


- To improve MH sensitivity, statistical separation
 of Multi-GeV Multi-Ring ν_e and ν̄_e events
- Two steps using likelihoods:
 - separate v_e + v_e from other
 - separate v_e from v_e
- Both steps improved with the new reconstruction algorithm

Separate $v_e + \overline{v}_e$ from other

	New algorithm	Old algorithm
Efficiency	75.7%	69.7%
Purity	77.8%	69.5%


Separate v_e from \overline{v}_e


		New algorithm	Old algorithm
True CC ν _e	Efficiency	56.8%	53.6%
	Purity	58.8%	52.6%
True CC v _e	Efficiency	68.4%	70.9%
	Purity	30%	25.9%

New reconstructrion algorithm in SK Extension of fiducial volume

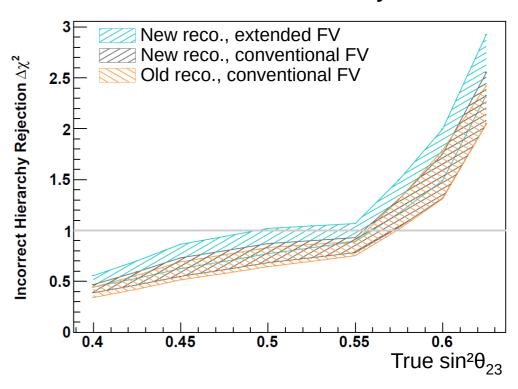
- Analysis for the mass hierarchy is limited by statistics
- Previous results use a fiducial volume cut 2m away from the walls: 30% of the target mass of the inner detector is lost
- Improved performance of new algorithm allow to extend FV to 50 cm from the walls
- T2K uses optimized FV cut since 2017, includes some events from this '0.5-2m from wall' region

Possible issues when increasing FV:

- Reconstruction performance near the wall
- Entering background

FV cut 2m \rightarrow 0.5m: +32% target mass

New reconstructrion algorithm in SK Sensitivity improvement


This leads to an increased sensitivity to the mass hierarchy

- New reconstruction algorithm produce e-like samples with improved purity
- Larger increase of sensitivity from the extension of FV, as the analysis is statistically limited

True Normal Hierarchy

New reco., extended FV New reco., conventional FV Old reco., conventional FV 0.5 0.4 0.4 0.45 0.5 0.5 0.6 True sin²θ₂₃

True Inverted Hierarchy

Sensitivity for SK-IV 3118.5 days of livetime Reactor constraint: $\sin^2(\theta_{13})$ =0.0210 ± 0.0011

Other analysis improvements

New analysis of SK IV data using this new reconstruction and extended fiducial volume, as well as a number of additional improvements

Update of interaction model

- Moved to NEUT 5.4.0
- CCQE: changed from Relativistic Fermi Gas (RFG) to Local Fermi Gas (LFG) model by Nieves et al.
- DIS: many updates, including:
 - include CKM matrix elements
 - update of low Q² corrections by Bodek and Yang
- Updated values of parameters describing pions Final State Interactions

Update of systematic uncertainties

- CCQE: updated for LFG
- DIS: updated for NEUT 5.4.0 + add uncertainty from pion multiplicities
- Final state interactions
- Solar flux uncertainties updated for additional data

Neutron production from pion capture implemented in simultation

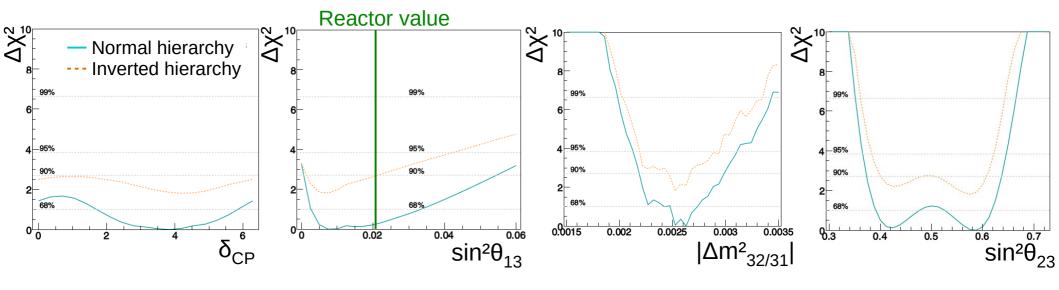
· OLD

 π - \cdot capture

single proton emission

Oxygen

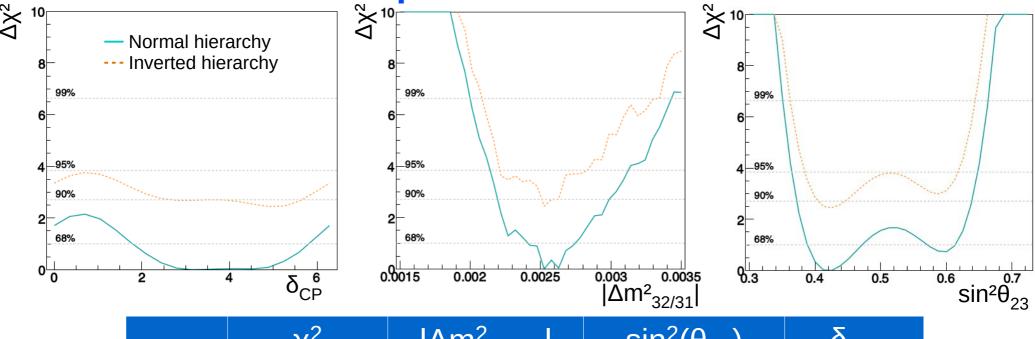
NEW


3 pattern of pi- capture

- 98% : π -np -> nn : two neutron emission • ①
- 2% : π -Az -> n(n) γ (A-1)_{Z-1} : radiative pion capture
 - $E_r > 100 \text{MeV}$: $\pi A_Z -> n \gamma (A-1)_{Z-1} \cdot \cdot \cdot \cdot 2$
 - $E_r < 100 \text{MeV}$: $\pi A_z \rightarrow n n \gamma (A-1)_{z-1} \cdot \cdot \cdot \cdot 3$

Additional SK-IV data

Livetime: 2519 → 3118.5 days (+23.7%)


Analysis with new reconstruction and FV SK atmospheric only

	χ^2	Δm ² _{32/31}	sin²(θ ₂₃)	δ_{CP}	$sin^2(\theta_{13})$
NH	576.3	2.63 x 10 ⁻³	0.588	3.84	0.008
IH	578.1	2.53 x 10 ⁻³	0.575	4.19	0.008

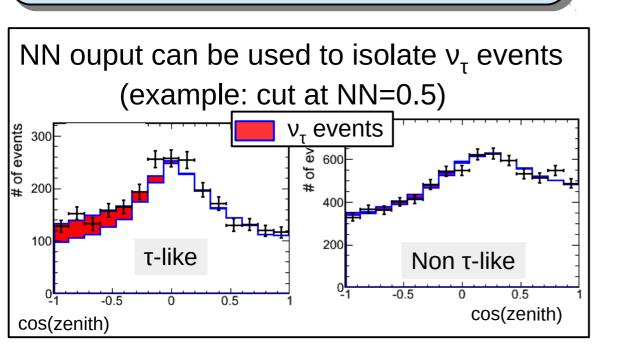
Preference for the normal hierarchy, $\Delta \chi^2 = -1.81$

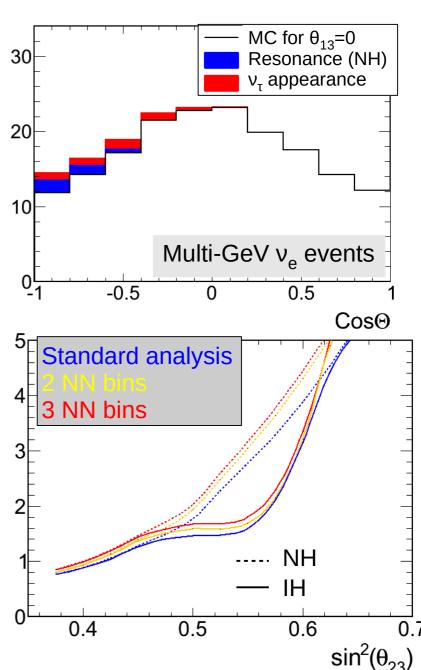
Analysis with new reconstruction and FV SK atmospheric + reactor results

	χ^2	Δm² _{32/31}	sin²(θ ₂₃)	δ_{CP}
NH	576.5	2.53 x 10 ⁻³	0.425	3.14
IH	579	2.53 x 10 ⁻³	0.425	4.89

Preference for NH $\Delta \chi^2$ =-2.45

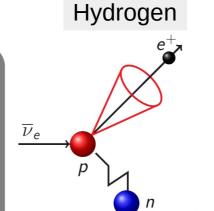
True $\sin^2\theta_{23}$	0.4	0.425	0.5	0.6
$p_0(\mathrm{IH})$	0.025	0.033	0.065	0.072
$\mathbb{C}\mathrm{L}^{\mathrm{H}}_{s}$	0.308	0.260	0.229	0.143

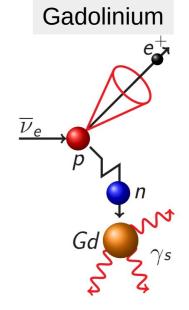

SK-IV only, 3118.5 days of livetime Reactor constraint: $\sin^2(\theta_{13})=0.0210\pm0.0011$


Prog. Theor. Exp. Phys. 2019, 053F01

Future improvements Use tau NN for oscillation analysis

Events


- Up/down asymmetric group of events with normalization uncertainties are major backgrounds for mass hierarchy
- CC v_{τ} cross-section has 25% uncertainty
- Can use NN output variable as an additional PDF variable for samples sensitive to the mass hierarchy



Future Neutron tagging

- Neutrons cannot be directly seen in Super-K
- Can be detected from gammas emitted during their capture
- SK IV-V: can use capture on hydrogen efficiency~20%
- Future SK-Gd: capture on Gd
 efficiency~80% at 0.1% Gd loading

8 MeV γ cascade

Possible benefits:

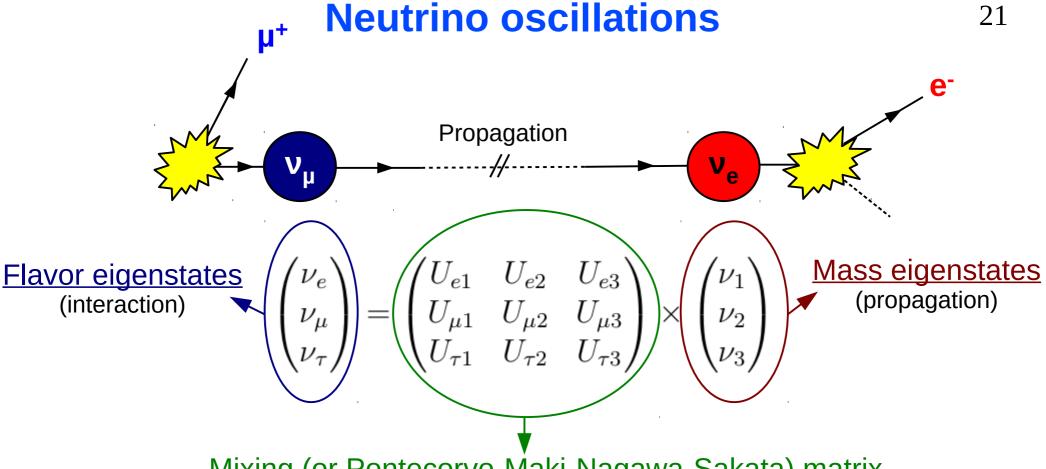
- ho statistical v_e/\overline{v}_e separation in Sub-GeV samples for δ
- ✓ Improve statistical v_e/\overline{v}_e separation in Multi-GeV samples for MH
- Correct for missing (invisible) energy to improve energy resolution

<u>Challenges</u>

- uncertainties on neutron production for high energy ν on nuclear targets
- uncertainties on re-interactions in nuclear material and water
- No measurement currently available

Preparation for SK-Gd

- Tank refurbished in preparation for Gd dissolution in water
- Main goal was to fix water leak
- Work complete, SK data taking re-started in January 2019 ("SK V")
- Preparing to dissolve Gd in water early 2020



- Currently we do not observe any water leakage from the SK tank within the accuracy of our measurement, which is less than 0.017 tons per day.
- This is less than 1/200th of the leak rate observed before the 2018/2019 tank refurbishment.

Summary

- Super-K is sensitive to the mass hierarchy through a matter induced resonance in the muon to electron flavor oscillation probability and to the value of δ_{CP} through the Sub-GeV electron like events
- Use of a new reconstruction algorithm increases the sensitivity of the experiment to the mass hierarchy, through more pure samples and the use of an expanded fiducial volume
- A new analysis of the SK-IV data was performed using this new reconstruction and additional improvement. Finds a preference for the normal hierarchy, which is favored by between 70% and 85% depending on the true value of the oscillation parameters assumed
- The T2K and Super-K collaboration have started working on a joint analysis of their data to study neutrino oscillations

Additional slides

Mixing (or Pontecorvo-Maki-Nagawa-Sakata) matrix link between the two sets of eigenstates

 $P(v_{\alpha} \rightarrow v_{\beta})$ oscillates as a function of distance L traveled by the neutrino

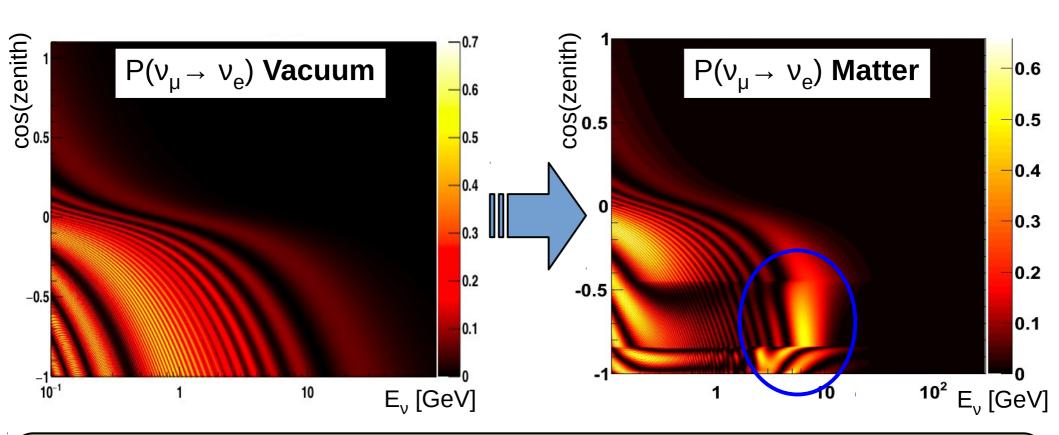
- Amplitude of oscillations depends on the mixing matrix U
- Phase of the oscillation depends on energy and difference of mass squared: Δm²_{ii}L/E

$$(\Delta m_{ij}^2 = m_i^2 - m_j^2)$$

Neutrino oscillations Parameters

In practice, for neutrino oscillations:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
"Atmospheric"
"Reactor"
"Solar"

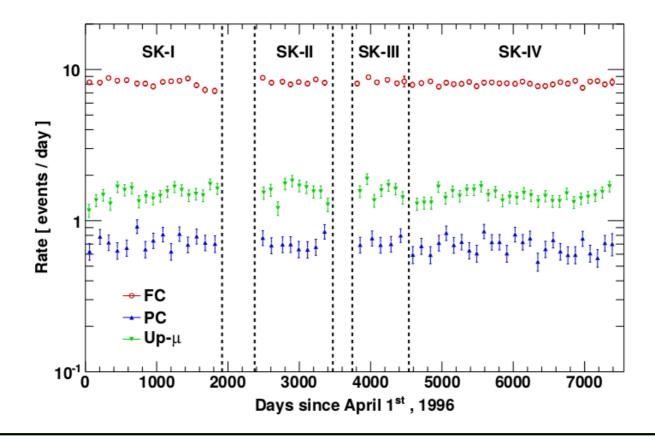

 $(c_{ij} = cos(\theta_{ij}), s_{ij} = sin(\theta_{ij}))$

 $P(v_{\alpha} \rightarrow v_{\beta})$ depends on **6 parameters**:

- \rightarrow 3 mixing angles θ_{12} , θ_{23} , θ_{13}
- → 2 independent mass splittings Δm²_{ii}
- → 1 complex phase, the CP phase δ

- Observed both disappearance and appearance of neutrino flavors
- All mass splittings (Δm^2_{ij}) and mixing angles (θ_{ij}) measured to be non-zero
- Only δ still unknown (not well constrained by data)
- Sign of ∆m²_{32/31} unknown

Atmospheric neutrino oscillations Matter effects



Presence of a resonance driven by θ_{13} induced matter effects between 2 and 10 GeV

- Only for v in NH and \overline{v} in IH \rightarrow sensitivity to the mass hierarchy
- Size of the effect depends on $\sin^2(\theta_{23}) \rightarrow \text{sensitive to } \theta_{23} \text{ octant}$
- MH sensitivity increases with larger statistics, improved ability to separate interactions of ν and $\bar{\nu}$ and constraint on $\sin^2(\theta_{23})$

Dataset for SK I-IV results

- 4 SK periods with different detector conditions over 20 years
- Total livetime: 5326 days (328 kton-year)
- > 27505 muon-like and 20949 electron-like events

Stable event rates for the different topologies

Dataset for SK I-IV analysis (PRD 97, 072001 (2018)), not new SK IV analysis with new reconstruction and extended fiducial volume

Oscillation analysis

- Maximum likelihood method
- Minimize χ^2 with respect to systematics for a grid of values of parameters to fit
- Minimization uses iterative matrix inversion method
- Binned χ^2 assuming Poisson statistics in each bin

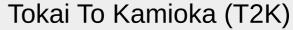
Oscillation parameters

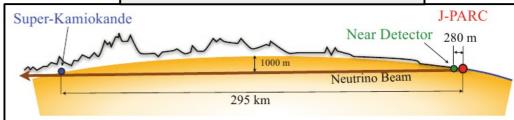
- \Rightarrow sin²(θ_{13})= 0.0219 ± 0.0012 (reactor)
- $\sin^2(\theta_{12}) = 0.304 \pm 0.014$ (solar+Kamland)
- $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$ (solar+Kamland)
- \rightarrow sin²(θ_{23}), Δ m²_{32/31} and δ free

$$\chi^2 = 2\sum_n \left(E_n\right) - \left(O_n\right) + O_n \ln \frac{O_n}{E_n} + \sum_i \left(\epsilon_i\right)^2$$

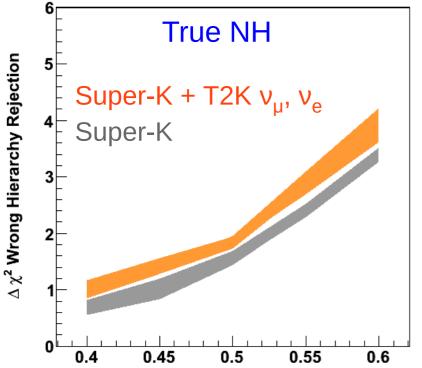
$$E_n = \sum_{j} E_{n,j} \left(1 + \sum_{i} f_{n,j}^{i} \epsilon_i \right)$$

Effect of a 1σ variation of syst. i on nb of evts in bin n for SK period j


Predictions calculated separately for each SK period

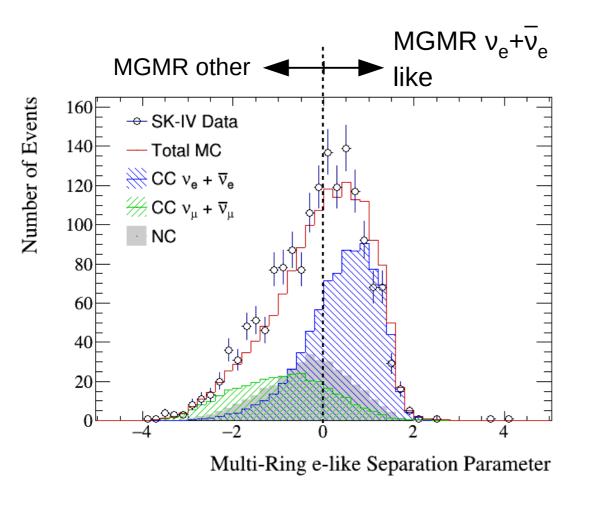

- different detector configurations, water quality and performance
 - → different MC simulations
- Some systematic uncertainties depend of the SK period
- Expectation from each period summed to compute χ^2

Analysis with external constraints


Motivations

- ► Uncertainty on value of $sin^2(\theta_{23})$
 - → uncertainty for MH determination
- Precise measurements of $\sin^2(\theta_{23})$ and $|\Delta m^2_{32}|$ by LBL experiments
- \succ Both experiments have sensitivity to δ
- Combination can also break degeneracies in certain cases

- Almost pure $v_{\mu}/\overline{v}_{\mu}$ beam
- L=295 km from J-PARC to Super-K
- Near detector complex to constrain systematic uncertainties

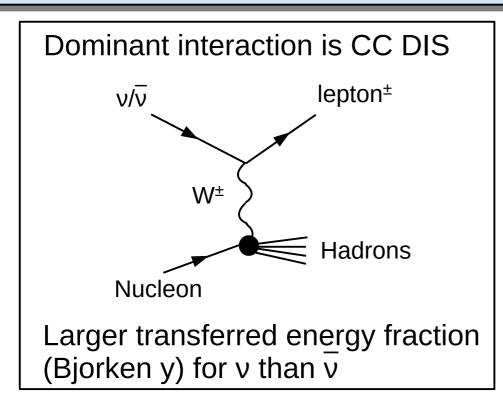


Error bands: uncertainty due to unknown δ value

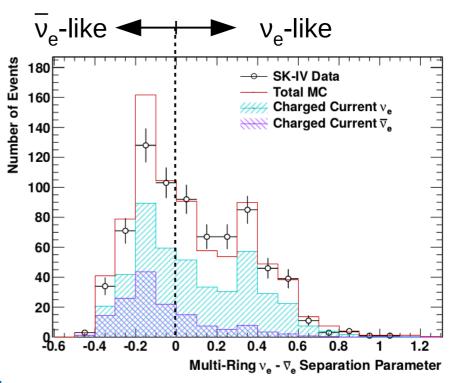
- NOT a joint analysis between the 2 collaborations.
- Use SK tools to build a model of T2K and fit data based on publicly available information
- Uses T2K data and analysis from PRD 91, 072010 (2015) not latest results (6.57e20 POT in v-mode, no \overline{v} -mode data, no appearance CC1 π sample, not using new reconstruction and fiducial volume)

Event selection FVFC multi-ring multi-GeV events - 1

First likelihood aims at removing NC and v_{μ}/\bar{v}_{μ} events which ended up in the MR e-like sample due to reduced PID performance for multi-ring events


4 variables:

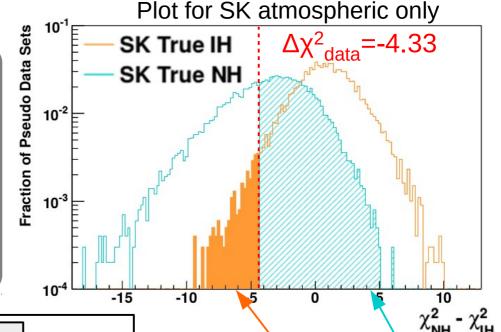
- PID of most energetic ring
- Momentum fraction of m.e.r.
- Nb of Michel electrons
- Largest distance between a Michel electron vertex and primary vertex


Plot from SK I-IV analysis (PRD 97, 072001 (2018)), not new SK IV analysis with new reconstruction and extended fiducial volume

Event selection FVFC multi-ring multi-GeV events - 2

Second likelihood is the real statistical separation between v_e and \overline{v}_e events

	Neutrino	Anti-neutrino
Nb of rings	More	Less
Nb of Michel e-	More	Less
Transverse momentum	Larger	smaller



Plot from SK I-IV analysis (PRD 97, 072001 (2018)), not new SK IV analysis with new reconstruction and extended fiducial volume

Result from SK I-IV analysis (PRD 97, 072001 (2018)), not new SK IV analysis with new reconstruction and extended fiducial volume

Mass hierarchy Significance

- MH significance does not go as $\sqrt{(\chi 2)}$
 - → compute p-values using toy MC
- Limited sensitivity at current statistics
 - → Also compute CLs values
- Significance depend on true values of θ_{23} and δ
 - → Compute for different true values

P-values and CLs for IH exclusion

P-values	Lower	Best fit	Upper
SK only	0.012	0.027	0.020
SK+T2K model	0.004	0.023	0.024

CLs	Lower	Best fit	Upper
SK only	0.181	0.070	0.033
SK+T2K model	0.081	0.075	0.056

$$CL_s = \frac{p_0(IH)}{1 - p_0(NH)}$$

Lower/upper edges of the 90% CL intervals for $\sin^2(\theta_{23})$ and δ