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DUNE Overview

See Friday 8/30 Plenary 09:00 - DUNE (Jae Yu)



DUNE — a fully international experiment

« 1094 collaborators from 184 institutions in 34 countries
« Growing at a rate of around 100 collaborators/year

Armenia, Brazil, Bulgaria, Canada,
CERN, Chile, China, Colombia,
Czech Republic, Spain, Finland,
France, Greece, India, Iran, Italy,
Japan, Madagascar, Mexico,
Netherlands, Paraguay, Peru,
Poland, Portugal, Romania, Russia,
South Korea, Sweden, Switzerland,
Turkey, UK, Ukraine, USA.

i o




DUNE

« Approximately 4X10 kton fiducial mass liquid-argon Far Detector
- First 2 modules in 2024, Beam operation in 2026, Final module in 2027
Located at SURF’s 1478 m level with 1300 km baseline

Near Detector located approximately 575 m from neutrino source

Wide-band neutrino beam (~ few GeV range)

Flagship physics topics: CPV, supernova neutrinos and BSM physics
See Friday 8/30 WG1 14:00 - DUNE Oscillation Physics (Kim Siyeon)
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Th e L B N F Beam Neutrino Flux at 1300 km

(CDR Optimized Beam)

LBNF proton beam extracted from
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 The LBNF (Long Baseline Neutrino Facility) beam is produced at Fermilab.
It will use 60-120 GeV proton beam at 1.2 MW, upgradeable to 2.4 MW.

It can run in neutrino and anti-neutrino modes by switching the polarity of
the magnetic horns.

 The wide-band beam enables the use of the first and second oscillation
maxima and enhances probing of new BSM physics.

65 See Tuesday 8/27 WG3 16:00 - Design Studies of the LBNF/DUNE Target (Chris Densham)



Near Detector (ND)

Apex of Embankment

Max. ht = 60’
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Control of systematic uncertainties affecting the long-baseline oscillation analysis




Near Detector (ND)

« The preliminary conceptual design includes three sub-detectors (right to left)
- ALArTPC (50~100 tons) with pixelated readout,
- A magnetized, high-pressure gaseous TPC (HPgTPC),

- A magnetized three-dimensional scintillator tracker (3DST).

« The design includes the possibility of taking data at varying off-axis positions,
exposing the ND to neutrino fluxes with different spectra.

— Handle the deconvolution of the neutrino flux and cross-section

o

See Monday 8/26 Poster 19:00 - 3DST-S in the DUNE Near Detector (Kim Siyeon)

See Thursday 8/29 WG1+2 14:00 - DUNE ND (Alan Bross)



Far Detector (FD)

FAR DETECTOR
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Far Detector (FD)

—_———

4X10-kton (fiducial) LAITPC modules *~. _
* Single and dual-phase detector designs Se

* Integrated photon detection s

APA: Anode Plane Assembly
CPA: Cathode Plane Assembly

—_—
APA CPA APA
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Foam Insulation

14.5m

Steel %:

Single-phase: charge drifts to wire planes (APAS)




A powerful imaging technology

SP
2 EM showers and a pion interaction with 4 prongs | “'7° (\

collection view. Run 4696, event 103.

See Monday 8/26 Poster 19:00
Measuring the space charge effect in ProtoDUNE-SP (Joshua Thompson)

- See Thursday 8/29 WG1+2 14:22
First Results from Singe-Phase ProtoDUNE at CERN Neutrino Platform (Jianming Bian)



BSM Physics at DUNE

 Topics investigated include:
— Non-standard short-baseline and long-baseline oscillations phenomena:

Sterile neutrino mixing
Non-standard interactions (NSI)
Non-unitarity mixing

CPT violation

Tau neutrinos

— BSM at the ND related to the beam and its interactions with the detector:
Low mass dark matter
Trident neutrinos

Heavy neutral leptons
- BSM at the FD benefitting from its large mass and resolution:

Boosted dark matter

Nucleon decay
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Non-standard Oscillation




Probability

Sterile Neutrino Mixing

» Sterile (right-handed) neutrinos are a prediction
of many BSM models explaining the origin of
neutrino masses.

Active-to-sterile neutrino mixing distorts the
standard oscillation probabilities. DUNE will be
sensitive to this effect through the combined
analysis of the v, and v, spectra from both ND
and FD.

Potentially, DUNE could look as well for non-
standard v appearance or use the atmospheric
sample from the FD.
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Non-Standard Interactions (NSI)

Projected DUNE has sensitivity to various NSI parameters. ,
, 5

Non-standard interactions (NSI) in propagation can be

described as new contributions to the MSW effect:

Matter effect (MSW
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Non-Unitary Mixing

If neutrinos acquire mass through a (type |) seesaw 1 — ee 0 0 o
mechanism, the mixing matrix need not be unitary. - e 1= 0y 0 o
Ore a’rp, 3 = Qrr
300 kton-MW-years with 80 GeV beam flux
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CPT Violation

P(v# — U,) # P(EM — v,) = CP violation
Pw, - v,) # P, — v,) = CPT violation
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Projected sensitivity of DUNE to CPT violation for an exposure of 300 kton-MW:-year and
three different values of 8,; mixing angle.

Current experimental bounds:  AAm2) = |am3, - A, | <3.7x 107 eV?

A(sin?6,3) = |sin2 6,3 — sin’ 923| 2032

DUNE can improve current limit on A(Am?;;) by almost one order of magnitude.
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Tau neutrinos

« Currently, almost all of our knowledge from the tau neutrino sector derives from lepton
universality of cross-section and PMNS unitarity of the mixing matrix.

« Tau neutrinos are challenging to select and reconstruct, but they could provide valuable
complementary information for BSM physics searches.

« Beam event statistics (for a flat efficiency of 30%):
- ~130 v, /year and ~30 anti-v_ /year,
- ~800 v, /year for the high-energy tune of the beam.

« The atmospheric sample gives access to the full first oscillation maximum, improving

constraints on the atmospheric parameters.
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New Physics at the Near Detector




Low-mass Dark Matter

[ Production N ( Detection )
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ND, where they are detected via electron
scattering.

« The main background (neutrino-electron) glg )
can be suppressed by taking data off-axis g
(PRISM). b
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Trident Neutrinos

Rare SM process, with one neutrino and two
leptons of opposite charge in the final state,

- has been observed with measured cross-section
in good agreement with SM.

SM cross-section is ~7 orders of magnitude
smaller than v ,CCTr background.

Trident rate is sensitive to the existence of
new forces mediated by a light vector boson
that could explain the muon g-2 anomaly.

vy N = vy~ N

DUNE

New Physics e e T
parameters T > g
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Heavy Neutral Leptons (HNL)

* Neutral portal to Heavy Neutrino
— The HNL coupling to SM “should not” be more than U2 ~ 107
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GeV masses and ~ 1ps lifetime.

(blue) DUNE-ND flux.

0.01

(green) NOvA ND flux.

0 20 30 a0

=] IIIIIIIIl]IIIlIIIIlIIII|IIII|II

22 0

g

E, GeV




New Physics at the Far Detector




Boosted Dark Matter

« Casel: Galactic halo can produced dark matter which could interact inelastically in DUNE.
= Dark phOtOﬂ p-scat: DUNE—40 kt-yr, 0 BGs and HK-380 kt-yr, 0 BGs
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Nucleon Decay

* DUNE, shielded from cosmic ray, has a high mass and precise patrticle tracking
= Baryon number violation can be done:

— Neutron - anti-neutron oscillation
- p — anti-v K*, n — K*e"
_ p N TI-O e+

« Sensitivity using full simulations (including atmospheric neutrinos and final state
interactions with the Argon nucleus) is coming for the TDR.
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Summary

 The DUNE detectors and the LBNF beam enable a rich experimental
program of BSM physics searches, including

- Non-standard short-baseline and long-baseline oscillation phenomena;

— Searches for new phenomena/particle at the ND related to the beam and its
interactions with the detector;

— Searches for new phenomena at the FD benefitting from its large mass.

« This is a very active and exciting area of collaboration between
experimentalists and theorists/phenomenologists.

» Look for results from finalized studies in the upcoming DUNE
Technical Design Report (TDR) later this year.
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Thank you for your attentions.
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Back-up




Fermilab Accelerator Complex
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Testing the standard “three-flavour” paradigm
complex phase
Uet U Ues 1 0 O ci3 0 size™\( cia s12 0
Upmns =| U U Uz | =10 23 523 0O 1 O —s12 ¢12 0
Un Up U 0 —s23 3 )\ —s513¢° 0 c13 0 01

CP Violation in the lepton sector might provide support for Leptogenesis
as mechanism to generate the Universe’s matter-antimatter asymmetry.

CP Violation: 0 = {O, 7T} Sij = sinb;; ; ¢;j = cos b;;

28



Testing the standard “three-flavour” paradigm

complex phase
Uet U Ues I 0 O ci3 0 53¢\ ci2 si2 O

Upmns =| U U Uz | =10 23 523 0O 1 O —s12 ¢12 0

Ui U U 0 —s23 c23 )\ —513¢° 0 13 0 01

CP Violation in the lepton sector might provide support for Leptogenesis
as mechanism to generate the Universe’s matter-antimatter asymmetry.

CP Violation: 0 = {O, 7T} Sij = sinb;; ; ¢;j = cos b;;

Caveat:

No direct evidence for Leptogenesis, since a model is needed to connect the low-scale
CPV observed here to high-scale CPV for heavy neutrinos that lead to Leptogenesis.
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Single Phase Concept
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Dual Phase TPC
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Thank you for your attentions.

(cho@Jkisti.re.kr)
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