Beyond the Standard Model at DUNE

Kihyeon Cho (KISTI)

On behalf of DUNE Collaboration

NuFACT2019, August 26~31, 2019 The Grand Hotel Daegu, Korea

Contents

- DUNE (Deep Underground Neutrino Experiment) Overview
- Beyond Standard Model (BSM) Physics
 - Oscillation effects
 - New physics at the Far Detector (FD)
 - New physics at the Near Detector (ND)
- Summary

DUNE Overview

See Friday 8/30 Plenary 09:00 - DUNE (Jae Yu)

DUNE – a fully international experiment

- 1094 collaborators from 184 institutions in 34 countries
- Growing at a rate of around 100 collaborators/year

DUNE

- Approximately 4X10 kton fiducial mass liquid-argon Far Detector
 - First 2 modules in 2024, Beam operation in 2026, Final module in 2027
- Located at SURF's 1478 m level with 1300 km baseline
- Near Detector located approximately 575 m from neutrino source
- Wide-band neutrino beam (~ few GeV range)
- Flagship physics topics: CPV, supernova neutrinos and BSM physics
 See Friday 8/30 WG1 14:00 DUNE Oscillation Physics (Kim Siyeon)

The LBNF Beam

Neutrino Flux at 1300 km (CDR Optimized Beam)

- The LBNF (Long Baseline Neutrino Facility) beam is produced at Fermilab.
- It will use 60-120 GeV proton beam at 1.2 MW, upgradeable to 2.4 MW.
- It can run in neutrino and anti-neutrino modes by switching the polarity of the magnetic horns.
- The wide-band beam enables the use of the first and second oscillation maxima and enhances probing of new BSM physics.

Near Detector (ND)

• Control of systematic uncertainties affecting the long-baseline oscillation analysis

Near Detector (ND)

- The preliminary conceptual design includes three sub-detectors (right to left)
 - A LArTPC (50~100 tons) with pixelated readout,
 - A magnetized, high-pressure gaseous TPC (HPgTPC),
 - A magnetized three-dimensional scintillator tracker (3DST).
- The design includes the possibility of taking data at varying off-axis positions, exposing the ND to neutrino fluxes with different spectra.
 - Handle the deconvolution of the neutrino flux and cross-section

See Monday 8/26 Poster 19:00 - 3DST-S in the DUNE Near Detector (Kim Siyeon)

See Thursday 8/29 WG1+2 14:00 - DUNE ND (Alan Bross)

Far Detector (FD)

Far Detector (FD)

A powerful imaging technology

2 EM showers and a pion interaction with 4 prongs

collection view. Run 4696, event 103.

See Monday 8/26 Poster 19:00

Measuring the space charge effect in ProtoDUNE-SP (Joshua Thompson)

See Thursday 8/29 WG1+2 14:22

First Results from Singe-Phase ProtoDUNE at CERN Neutrino Platform (Jianming Bian)

BSM Physics at DUNE

- Topics investigated include:
 - Non-standard short-baseline and long-baseline oscillations phenomena:
 - Sterile neutrino mixing
 - Non-standard interactions (NSI)
 - Non-unitarity mixing
 - CPT violation
 - Tau neutrinos
 - BSM at the ND related to the beam and its interactions with the detector:
 - Low mass dark matter
 - Trident neutrinos
 - Heavy neutral leptons
 - BSM at the FD benefitting from its large mass and resolution:
 - Boosted dark matter
 - Nucleon decay

Non-standard Oscillation

Sterile Neutrino Mixing

- Sterile (right-handed) neutrinos are a prediction of many BSM models explaining the origin of neutrino masses.
- Active-to-sterile neutrino mixing distorts the standard oscillation probabilities. DUNE will be sensitive to this effect through the combined analysis of the ν_μ and ν_e spectra from both ND and FD.
- Potentially, DUNE could look as well for non-standard v_{τ} appearance or use the atmospheric sample from the FD.

Neutrino Energy (GeV)

FD

 10^{3}

Neutrino Energy (GeV)

ND

 10^{-1}

10⁻¹ 10²

1 10 L/E (km/GeV)

 $\Delta m_{41}^2 \left(eV^2 \right)$

DUNE

Simulation

Gariazzo et al. (2016)

and Daya Bay/Bugey-3 90% C

Non-Standard Interactions (NSI)

Projected DUNE has sensitivity to various NSI parameters.

Non-standard interactions (NSI) in propagation can be described as new contributions to the MSW effect:

 u,d,e^-

Non-Unitary Mixing

- If neutrinos acquire mass through a (type I) seesaw mechanism, the mixing matrix need not be unitary.
- $N = \begin{pmatrix} 1 \alpha_{ee} & 0 & 0 \\ \alpha_{\mu e} & 1 \alpha_{\mu \mu} & 0 \\ \alpha_{\tau e} & \alpha_{\tau \mu} & 1 \alpha_{\tau \tau} \end{pmatrix} U^{3 \times 3}$

300 kton-MW-years with 80 GeV beam flux

- Allowed regions at the 1σ, 90%, 2σ CL for non-unitarity mixing parameters for DUNE-only (solid) and DUNE + present constraints (dashed)
- Impact for non-unitarity on the DUNE CPV discovery portal

CPT Violation

$$P(\nu_{\mu} \to \nu_{e}) \neq P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \Rightarrow \text{CP violation}$$

 $P(\nu_{\mu} \to \nu_{\mu}) \neq P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}) \Rightarrow \text{CPT violation}$

- Projected sensitivity of DUNE to CPT violation for an exposure of 300 kton-MW-year and three different values of θ_{23} mixing angle.
- Current experimental bounds: $\Delta(\Delta m_{31}^2) \equiv \left| \Delta m_{31}^2 \Delta \bar{m}_{31}^2 \right| < 3.7 \times 10^{-4} \text{ eV}^2$ $\Delta(\sin^2\theta_{23}) \equiv \left| \sin^2\theta_{23} \sin^2\bar{\theta}_{23} \right| < 0.32$
- DUNE can improve current limit on $\Delta(\Delta m_{31}^2)$ by almost one order of magnitude.

17

Tau neutrinos

- Currently, almost all of our knowledge from the tau neutrino sector derives from lepton universality of cross-section and PMNS unitarity of the mixing matrix.
- Tau neutrinos are challenging to select and reconstruct, but they could provide valuable complementary information for BSM physics searches.
- Beam event statistics (for a flat efficiency of 30%):
 - \sim 130 ν_{τ} /year and \sim 30 anti- ν_{τ} /year;
 - ~800 v_{τ} /year for the high-energy tune of the beam.
- The atmospheric sample gives access to the full first oscillation maximum, improving constraints on the atmospheric parameters.

New Physics at the Near Detector

Low-mass Dark Matter

- Dark matter particles produced in the decay of light mesons reach the DUNE ND, where they are detected via electron scattering.
- The main background (neutrino-electron) can be suppressed by taking data off-axis (PRISM).
- Shown here the sensitivity (90% CL) of DUNE for a 7-year (50% neutrino beam, 50% anti-neutrino) run

Trident Neutrinos

- Rare SM process, with one neutrino and two leptons of opposite charge in the final state,
 - has been observed with measured cross-section in good agreement with SM.
- SM cross-section is ~7 orders of magnitude smaller than v_u CC π background.
- Trident rate is sensitive to the existence of new forces mediated by a light vector boson that could explain the muon g-2 anomaly.

Heavy Neutral Leptons (HNL)

- Neutral portal to Heavy Neutrino
 - The HNL coupling to SM "should not" be more than $U^2 \sim 10^{-7}$

- likely similar to LBNF target.
- DUNE ND geometry is favorable for GeV masses and ~ 1µs lifetime.

New Physics at the Far Detector

Boosted Dark Matter

Case1: Galactic halo can produced dark matter which could interact inelastically in DUNE.

Case2: Dark matter from the core of Sun could interact elastically with the DUNE.
 ⇒ Lepto-phobic Z'

Expected 5σ discovery reach with 1year DUNE lifetime

Angle between Sun and particles produced

Nucleon Decay

- DUNE, shielded from cosmic ray, has a high mass and precise particle tracking
 ⇒ Baryon number violation can be done:
 - Neutron anti-neutron oscillation
 - p → anti- ν K+, n → K+e⁻
 - $p \rightarrow \pi_0 e^+$
- Sensitivity using full simulations (including atmospheric neutrinos and final state interactions with the Argon nucleus) is coming for the TDR.

Summary

- The DUNE detectors and the LBNF beam enable a rich experimental program of BSM physics searches, including
 - Non-standard short-baseline and long-baseline oscillation phenomena;
 - Searches for new phenomena/particle at the ND related to the beam and its interactions with the detector;
 - Searches for new phenomena at the FD benefitting from its large mass.
- This is a very active and exciting area of collaboration between experimentalists and theorists/phenomenologists.
- Look for results from finalized studies in the upcoming DUNE Technical Design Report (TDR) later this year.

Thank you for your attentions.

(cho@kisti.re.kr)

Back-up

Fermilab Accelerator Complex 101 kW on the NuMI/NOvA target in one supercycle on June 13, 2016 Proton Improvement Plan (PIP) ____ Advanced Accelerator Test Area Proton Beamline Accelerator Technology Complex (Decommissioned) **Facility** Illinois Accelerator Research Center Superconducting Linac (Part of proposed PIP II project) 618.5 KW Linac 06/13/16 Booster_ Muon Area **Neutrino Beam** To Minnesota Booster Neutrino Beam Neutrino Beam To South Dakota (Part of proposed LBNF Main Injector and Recycler **Protons** Recycler Neutrinos **■** Muons ■ Targets R&D Areas Main Injector

Testing the standard "three-flavour" paradigm

complex phase

$$U_{\text{PMNS}} = \begin{pmatrix} U_{\text{e1}} & U_{\text{e2}} & U_{\text{e3}} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}$; $c_{ij} = \cos \theta_{ij}$

Testing the standard "three-flavour" paradigm

complex phase

$$U_{\text{PMNS}} = \begin{pmatrix} U_{\text{e}1} & U_{\text{e}2} & U_{\text{e}3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}$; $c_{ij} = \cos \theta_{ij}$

Caveat:

No direct evidence for *Leptogenesis*, since a model is needed to connect the low-scale CPV observed here to high-scale CPV for heavy neutrinos that lead to *Leptogenesis*.

Single Phase Concept

time

Dual Phase TPC

- Larger drift distance (12 m) higher fields
- Potentially better signal to noise
- Readout/HV access through chimneys on top.

- 153,600 channels
- 80 3x3 m² Charge Readout Planes

Thank you for your attentions.

(cho@kisti.re.kr)