



#### Radiation Damage Experiments Update from the RaDIATE Collaboration

27 August 2019

DJ Senor, AM Casella (PNNL) PG Hurh, K Ammigan (FNAL) T Ishida (J-PARC)

on behalf of the RaDIATE Collaboration

21st International Workshop on Neutrinos from Accelerators (NuFact 2019) Daegu, Korea



PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-146666





#### **Motivation**



- Recent major accelerator facilities have been limited in beam power and operation time by target and window survivability
- Future high power, high intensity accelerators will present even greater challenges
- Understanding the causes of radiation-enhanced failure mechanisms is critical to enabling the science from future facilities



Cracked NuMI target, FNAL



NuMI-MINOS target cooling water leak and radiationassisted corrosion, FNAL



Cavitation-induced erosion of SNS target vessel, ORNL



# **Radiation Damage Effects**



- Irradiation can degrade a variety of material properties
  - Hardening and embrittlement
  - Swelling
  - Radiation-enhanced creep
  - Irradiation-assisted corrosion and stress corrosion cracking
  - Transport property degradation
- Microstructural effects are responsible for property degradation
  - Isolated point defects
  - Clusters and dislocation loops
  - Gas production and transmutation
  - Voids and bubbles
  - Radiation-induced segregation
  - Loss of phase stability





Swelling of W after proton irradiation Malloy et al. 2005. JNM, 343:219









Voids in irradiated Al Jenkins and Kirk, 2001, Characterization of Radiation Damage by TEM, IOP



# Irradiation Contributes to Other Failure Mechanisms



- Thermal shock (stress)
  - Rapid heating and thermal expansion of material at the beam location, surrounded by cooler material, creates a sudden localized compressive stress
  - Stress waves travel through the material causing plastic deformation, cracking, etc.





Ir rod after a single proton pulse (1.27 x 10<sup>12</sup> pot) Torregrosa et al. 2016. *CERN-EN-2016-004* 

(Photo courtesy J. Lettry, ISOLDE)



# **Example Application of Interest**



- T2K Ti-6Al-4V beam window at J-PARC
  - Window performance is dependent on a variety of material properties
    - Thermal expansion
    - Elastic modulus
    - Plastic deformation
    - Tensile strength
    - Fatigue strength
    - Fracture toughness
  - Radiation damage affects all of these properties to some degree
    - Most target/window materials of interest have limited proton irradiation data
    - Reactor irradiation data are of limited utility because of differences in H/He production rates and transient temperature effects compared to high-power accelerators
  - Anticipating future performance, particularly at higher beam power, requires more data and improved understanding of these effects









#### **RaDIATE Collaboration**



- The Radiation Damage In Accelerator Target Environments
   Collaboration was founded in 2012 by five organizations led by
   FNAL and STFC
- Membership has grown to 14 organizations in six countries
- Primary purpose is to bring together the target design and radiation materials science communities to improve understanding of radiation effects on accelerator-relevant materials at accelerator-relevant conditions with the ultimate goal of improving target performance and lifetime































## **Principal RaDIATE Activities**



- Proton irradiation of materials for beamintercepting devices at the Brookhaven Linac Isotope Producer (BLIP)
  - Ti-base alloys for vacuum windows
  - Additively-manufactured Ti-base alloys for beam dump vessel
  - Be for advanced neutrino targets
  - SiC-coated graphite for oxidation-resistant targets
  - Ir, Si, Mo-TZM and CuCrZr for antiproton targets and beam dumps
  - Al-base alloys for spallation source beam windows
- Post-irradiation examination and testing performed at PNNL, Fermilab and CCFE
- BeGrid2 experiment using BLIPirradiated samples for thermal shock testing as part of HRMT43 at CERN

























#### **BLIP Irradiation Capsules**



- A total of 9 separate capsules (>200 samples) were irradiated at BLIP
  - Three separate irradiation runs during 2017-18
  - 181 MeV/154 µA incident rastered proton beam
  - 0.7-4.6 x 10<sup>21</sup> pot
  - Each capsule designed to achieve specific temperatures relevant to the applications for those samples
- Four of the nine capsules experienced sample or capsule damage during or after irradiation that limited post-irradiation testing opportunities



Isotope

Capsules

**RaDIATE** 

Capsules



# **Ti-Base Alloy Tensile Testing**



- Irradiated samples received ~0.25 dpa
- Distinct radiation hardening observed for each of the four grades
  - Ti-6Al-4V
    - Grade 5 Standard commercial grade
    - Grade 23 Extra low interstitials (ELI)
    - Grade 23-F ELI, alternate processing
  - Ti-3AI-2.5V
    - Grade 9 Standard commercial grade
- Ti-3Al-2.5V retains some uniform elongation after irradiation while Ti-6Al-4V grades have essentially none
- Ti-6Al-4V grades stronger than Ti-3Al-2.5V but less ductile
- Additional irradiated (1.0-1.5 dpa) tensile tests currently underway







# **Ti-Base Alloy Microscopy**



- Grade 23 Microscopy on unirradiated samples
  - Scanning electron microscopy reveals composition contrast related to two-phase (α+β) microstructure with elongated grains due to thermomechanical processing
  - Transmission electron microscopy reveals moderate dislocation density caused by thermomechanical processing
  - Electron backscatter diffraction (EBSD) successfully indexed both phases and revealed that both exhibit strong inter-related texture
- Irradiated sample microscopy currently underway
  - Differences in microstructure will provide insight into radiation damage mechanisms that can be related to macroscale property degradation









## **Ti-Base Alloy Microscopy**



- Correlated EBSD and AFM measurements on unirradiated and irradiated samples
  - Allows quantitative correlation of individual grain nanohardness to grain orientation
    - Analysis still pending
  - Differences in nanohardness or relationship to grain orientation between unirradiated and irradiated will supplement insight gained from microstructural studies
  - Based on AFM results, it appears not all of the β-Ti grains were resolved and indexed by EBSD
    - $\circ$  Good correlation between the indexed β-Ti phase regions and the AFM nanohardness results
  - Significant relative hardness contrast between α-Ti and β-Ti phases







# **Ti-Base Alloy Fatigue Testing**



- Macro-scale fatigue testing at Fermilab
  - Developed and refined a fatigue testing apparatus using a cantilever-type specimen
  - Demonstrated on unirradiated samples
  - Irradiated fatigue samples recently shipped from PNNL to Fermilab
- Meso-scale fatigue testing at CCFE, in collaboration with University of Oxford and STFC
  - Uses mm-scale samples cycling at very high frequency (kHz) coupled with optical measurement of deflection
  - Originally developed and demonstrated on unirradiated samples at University of Oxford
  - System for irradiated sample testing currently being installed at CCFE in collaboration with STFC
  - Irradiated samples to be shipped from PNNL to CCFE in fall 2019















#### **Be Tensile Testing**



- Unirradiated and irradiated (0.06 dpa) tensile testing recently completed
  - PF-60 and S-65F grades tested at RT and 400°C
    - Primary difference between the two grades is manufacturing method
  - Distinct differences in yield behavior observed between the two grades
  - Detailed data analysis still underway



One layer of Be (PF-60) tensile samples during assembly of the irradiation capsule





## **Be Capsule Film Dosimetry**



- Performed postirradiation beam diagnostics using gamma-sensitive film to locate beam spot relative to capsule face
- Center of high dose region appears to be offset
  - ~5 mm upward
  - ~1 mm right
- This information can help refine estimates of radiation damage (dpa) and irradiation temperature for individual samples





#### **Thermal Shock Testing**



- Thermal shock testing takes place in the HiRadMat facility at CERN
  - Used to evaluate tolerance of materials to thermal shock
  - Single pulse experiments at challenging beam conditions
  - BeGrid2 (HRMT43) experiment in 2018 included previously-irradiated samples for the first time
  - Builds off successful BeGrid(HRMT24) experiment in 2015 that studied four grades of Be

| Beam Parameters     |                                          |
|---------------------|------------------------------------------|
| Beam energy         | 440 GeV                                  |
| Max bunch intensity | 1.2 x 10 <sup>11</sup> ppb               |
| No. of bunches      | 144, 216 or 288                          |
| Max pulse intensity | 3.5 x 10 <sup>13</sup> ppp               |
| Pulse length        | 7.2 µs                                   |
| Gaussian beam size  | 0.25 mm (1σ)                             |
| Peak proton fluence | 9.5 x 10 <sup>15</sup> p/cm <sup>2</sup> |







# **Thermal Shock Testing**



- The BeGrid2 experiment included Be, Si, Ti, glassy carbon, graphite, SiC-coated graphite, foam (C, SiC) and electro-spun nanofiber mat (SiO<sub>2</sub>, ZrO<sub>2</sub>) samples
  - Loaded into holders and experiment fixtures design by FNAL
  - Unirradiated samples and fixture arrays prepared at FNAL
  - Irradiated samples and fixture arrays prepared at PNNL















## **Thermal Shock Testing**



- The sample arrays were shipped to CERN and then loaded into the experiment frame
- The thermal shock beam pulses were successfully delivered to the samples in October 2018
- The samples will be shipped to PNNL and CCFE for post-irradiation examination and testing









#### **Summary**



- The RaDIATE Collaboration is pursuing a variety of technically challenging and unique experiments to enable design and operation of advanced accelerators
  - Broad engagement between the target design and radiation materials science communities
- Post-irradiation testing of the samples irradiated at BLIP in 2017-18 is underway
  - Several of the materials were exposed to unprecedented dpa values
  - The data will be a significant contribution to knowledge of beam-intercepting device irradiation performance
    - o Irradiation-induced swelling/shrinkage
    - Mechanical properties including tensile, fatigue and bend
    - Microstructural characterization including SEM, TEM, EBSD and AFM
- In-beam thermal shock testing at CERN's HiRadMat facility completed in 2018
  - First-ever exposure of previously-irradiated materials
  - Post-irradiation examination and testing still to come



# **Upcoming RaDIATE Meeting**



- The 6<sup>th</sup> Annual RaDIATE
   Collaboration Meeting will be hosted by TRIUMF
  - Vancouver, BC, Canada
  - Week of 9 December 2019
  - Details forthcoming soon
- Participation is welcome
- For further information, please contact
  - Patrick Hurh, FNAL
    - <u>hurh@fnal.gov</u>
  - Alex Gottberg, TRIUMF
    - o gottberg@triumf.ca
  - http://radiate.fnal.gov





# **Acknowledgements**



 This document was prepared by the RaDIATE Collaboration in part using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.