Development of New Muon Monitors for J-PARC neutrino beam line

K.Yasutome on behalf of T2K MUMON group Kyoto University

NUFACT August 29th, 2019

Contents

- What is MUMON, Why is MUMON important?
- New detector candidates for MUMON
 - 1. Diamond detector
 - 2. PMT
 - 3. EMT Type I
 - 4. EMT Type II (EMT : Electron Multiplier Tube)
- Discussion
- Proposals and preparation of EMT beam test

• Summary

Contents

• What is MUMON, Why is MUMON important?

- New detector candidates for MUMON
 1. Diamond detector
 2. PMT
 3. EMT Type I
 4. EMT Type II
- Discussion
- Proposals and preparation of EMT beam test

• Summary

What is J-PARC neutrino experiment?

What is a muon monitor (MUMON)?

Current (Si, IC) detectors

- Each array has 7×7 channels and covers 150 cm²
- Get beam intensity and center position by fitting collected charge 2D distribution
- The detector intrinsic resolution (RMS)
 - Beam center < 0.3 mm
 - Beam intensity < 0.1%

Monitoring T2K beam

Example of 2D profile

Some issues of Current detectors

Si & IC has shown excellent performance since the T2K started. However, we are concerning some issues as beam power is getting increasing.

1st issues : Degradation for Silicon Detectors

Signal decrease (~1%/5×10²⁰ P.O.T) is seen that may be due to damage. We will have to replace Si detectors frequently (1/half a year) for future more high intensity T2K beam.

Some issues of Current detectors

2nd issues : Signal response for IC chambers

At high intensity, more electron-ion pairs are created and distort the electric field inside the detector, which worsen yield collection. [solution 1] : Higher voltage application \rightarrow Breakdown is a big concern

[solution 2] : Use of He gas instead of "Ar" \rightarrow Pileup is seen due to faster ion drift speed

Contents

• What is MUMON, Why is MUMON important?

- New detector candidates for MUMON
 1. Diamond detector
 2. PMT
 3. EMT Typel
 4. EMT TypelI
- Discussion
- Proposals and preparation of EMT beam test

• Summary

Why new detectors?

• We are planning to increase the T2K beam power in the near future.

	Now (485 kW)	Future plan (1.3 MW)
# of protons / pulse	2.4×10^{14}	3.2×10^{14}
Operation cycle	2.48 s	1.16 s

Our concerning issues could be problematic!

Candidates for new detectors

Diamond

Diamond detectors are expected have higher radiation resistance thanks to higher displacement energy.

PMT or EMT

EMT is like "PMT" using a aluminum instead of photocathode (detail later). \rightarrow may have higher radiation resistance.

Contents

- What is MUMON, Why is MUMON important?
- New detector candidates for MUMON
 1. Diamond detector
 2. PMT
 3. EMT Typel
 4. EMT TypelI
- Discussion
- Proposals and preparation of EMT beam test

• Summary

1st candidate : Diamond

	A1, A2	B1, B2	C1, C2
Edge	metaled	Not metaled	metaled
Dim.	3.8 × 3.8 × 0.5 (mm ³)	4.0 × 4.0 × 0.5 (mm ³)	4.5 × 4.5 × 0.5 (mm ³)
Crystal	Element 6	Element 6	Element 6
Electrode	Element 6	Element 6	CIVIDEC

Diamonds detectors have been installed from 2012 - 2017 C1 and C2 are relatively new ones.

Intensity resolution and Linearity

Comparison with current detectors

- Intensity resolution : less than 1% for both (requirement is 1%)
- Linearity : 5% fluctuation (less than 5% for Si, IC) (requirement is 5%)
 intensity resolution
 Linearity

Stability

Stability (Green : 3%, Red : 5% degradation)

More than 5% degradation are seen for all diamond detectors until 5.0×10²⁰ protons on target (P.O.T.) is accumulated, while less than 3% for Si.

Contents

• What is MUMON, Why is MUMON important?

New detector candidates for MUMON
1. Diamond detector
2. PMT
3. EMT - Typel
4. EMT - TypelI (EMT : Electron Multiplier Tube)

Discussion

Proposals and preparation of EMT beam test

• Summary

The development of prototype detectors - PMT & EMT -

- Tested the 2 types of PMTs and 4 types of EMTs in the same places as the diamond detectors.
- Results of this commissioning run are shown in the paper, "Y. Ashida et al., Prog. Theor. Exp. Phys., 103H01, 2018".

2nd candidate : PMT

- Two nominal PMTs (Hamamatsu R9880) were installed.
- A BNC connector was used for the PMT-Type near the detector, not for PMT-Type β (radiation damages were expected to be different).
- Linearity and stability were checked.

2nd candidate : PMT

Unstable events were found if the different HV were applied. Stability is worse compared with current detectors.

PMT doesn't seem a good candidate for MUMON <u>18</u>

Introduction of EMT structure

Sh

- The components of EMT are the same as the standard PMT except for the photocathode.
- Photocathode material is replaced with Al for EMT.
 - \rightarrow expect the higher radiation-resistant accepting the low signal.
- Current options
 - 1. Type I (Dynodes with Sb)
 - \rightarrow higher for the signal amplitude
 - \rightarrow expected gain : ~10⁶
 - 2. Type II (Dynodes without Sb)
 - \rightarrow higher for the radiation resistance
 - \rightarrow expected gain : 10~10³

3rd candidate : EMT-Type I

- 2 prototype detectors (Type IA & Type IB) are custom-mades using Hamamatsu R9880. Capacitances on dynodes are different.
- Readout : 65 MHz Flash-ADC same as Si and IC.

	Capacitance (IA)	Capacitance (IB)		
Dynode 5	-	100 nF		
Dynode 6	-	100 nF		
Dynode 7	10 nF	100 nF		
Dynode 8	10 nF	330 nF		
Dynode 9	10 nF	330 nF		
Dynode 10	10 nF	330 nF		

20

Y. Ashida et al., Prog. Theor. Exp. Phys., 103H01, 2018

Time Response

- Smaller tail contribution is better because tail contribution affects bunch-bybunch monitoring for T2K.
- In this analysis, tail contribution is estimated by calculating the ratio of 1st bunch and the tail of final bunch.

Intensity resolution and Linearity

- Intensity resolution and Linearity are checked.
- Type IB shows better linearity than Type IA thanks to the improvement of capacitance.
- \cdot Higher voltage worse the linearity due to the electric field distortion.

Y. Ashida et al., Prog. Theor. Exp. Phys., 103H01, 2018

22

Stability

 We can see ~3% drift for first 10 days since installation.

(~2.2 mC)

 \rightarrow Hamamatsu recommended that we should stabilize the alkali-metal condition on dynodes for "warming-up" before use. (1~5 mC)

 \rightarrow This kind of effect will be studied in the next beam test (detail later).

• After the drift, both EMT shows the nice performance as for stability.

4th candidate : EMT-Type II

- EMT Type II has no Sb on dynodes (expected gain is $10 \sim 10^3$). \rightarrow We are expecting the higher radiation resistance than Type I.
- Unfortunately we cannot see any signal on this commissioning at 450 V.
- We tried other sources such as "fluorescent light", "radioactive source (152Eu)".

Signal check with other conditions Type I (w/ Sb) Type II (w/o Sb)

We are looking forward to seeing the signal with Type II in the beam test.

Sumary and Discussion from the commissioning run

<u>Diamond</u>

• Tail contribution, intensity resolution and linearity are good, however, stability, which is most important parts for monitors, is worse.

<u>PMT</u>

Intensity resolution and linearity are worse than ones of current detectors.

EMT Type I

• All properties (Intensity resolution, linearity, and stability) are comparable or better than current detectors.

EMT Type II

• No signal

We concluded that EMT - Type I was the best candidate. We would like to investigate EMT - Type II for higher intensity beam.

Contents

- What is MUMON, Why is MUMON important?
- New detector candidates for MUMON
 1. Diamond detector
 2. PMT
 3. EMT Typel
 4. EMT TypelI
- Discussion
- Proposals and preparation of a beam test

• Summary

Proposals of EMT beam test

EMT is expected to have better performance for T2K beam.

- \rightarrow We proposed the beam test for EMT to investigate more.
- → Accepted by Research Center For Electron Photon Science (ELPH) at Tohoku university in Japan.
- \rightarrow Electron beam. The Conversion factor on radiation damages ($\mu/e = 1.12$)

We are planning to measure the followings...

1. Linearity

From current intensity (1.7 × 10⁷ μ /cm²/3 μ s) to future intensity (3.9 × 10⁷ μ /cm²/3 μ s)

2. <u>Stability</u>

corresponding to 10-years beam exposure with future intensity (2.9 × $10^{15} \mu/cm^2$)

- 3. Stability of diamond detectors
- 4. Others
- $\boldsymbol{\cdot}$ the effect of warming-up effect of EMT

Timeline	Augu	September		October		
General	Decis Run	ion of plan				time
Design	Decis ion	Decis ion Manufacture		Che ck		beam
Hardware (CT &	signal check of		Confirmation of			bected
DAQ	Developmen t of DAQ		DAQ performance			Exp

Preparation of EMT beam test

- Setup1 is used for making the profile of electron beam.
- CT is put in the upstream to calibrate the beam intensity.
- 1 silicon detector will be put in front of EMTs to be compared with EMTs' performance.

Summary

- J-PARC neutrino experiment is aiming to discovering the CP violation (currently 2 σ).
- MUMON is essential for the T2K experiment in order to generate a well oriented neutrino beam.
- Current MUMON detectors have some concerns, which will be problematic for higher intensity beam of T2K.
- We are planning to develop new detectors (Diamond, EMT) for MUMON which has more radiation resistance.
- EMT seems to have a better performance according to the commissioning. So the beam test is planned.
- Currently we are preparing the beam test which will be conducted in the end of October 2019.

Backup

Signal check for Type II

HV: -1300 V, fluorescent light