Neutrino Cross Section Measurements in the NOvA Near Detector

Hongyue Duyang University of South Carolina

For the NOvA Collaboration

NUFACT 2019 Daegu, Korea 2018-08-27

- Introduction to the NOvA ND and flux.
- Neutral pion measurements
- Inclusive Measurements
- Summary

- Introduction to the NOvA ND and flux.
- Neutral pion measurements
- Inclusive Measurements
- Summary

The NOvA Near Detector

- NOvA is a Long-baseline neutrino oscillation experiment:
 - See Erica Smith and Steven Calvez's talk for the latest oscillation results!
- The ND is 1 km from source, underground at Fermilab.
- PVC cells filled with liquid scintillator.
- Alternating planes of orthogonal view.
- 193 ton fully active mass.
- 97 ton downstream muon catcher.

Low-Z, fine-grained 1 plane ~0.15X₀ (38 cm).

Event Topology

Motivation

- ch in physics themselves.
- Also important to oscillation systematic uncertainties:

Cross-se

- Signals and backgrounds to the oscillation analysis. ٠
- Oscillations are measured as function of neutrino en gy: need to reconstruct E_v correctly.

NOvA Cross-Section Measurements Overview

- Both neutrino and anti-neutrino modes.
- Excellent statistics from 193 ton of fully-active tracking region.
- Inclusive measurements:
 - + ν_{μ} -CC inclusive
 - v_e -CC inclusive
- Neutral pion measurements:
 - Neutral current coherent π^0 (Submitted to PRD).
 - Charged current semi-inclusive π^0 (paper in preparation).
 - NC π^0 inclusive.
- Charged pion measurements
- Others
 - v_{μ} -CC 0π
 - v_{μ} -CC 2p2h
 - And more

- Narrow band neutrino beam 1~3GeV peak at ~2GeV, dominated by $v_{\mu}(94\%)$
 - Right on the DUNE 1st oscillation maximum.
- Both neutrino mode and anti-neutrino mode.
- Hadron production uncertainty constraint by external hadron production data.

- Introduction to the NOvA ND and flux.
- Neutral pion measurements
- Inclusive Measurements
- Summary

NC Coherent π^0

- Neutrinos coherently scatter on whole nucleus and produce pions.
- Background to v_e appearance
- Small cross section compares with other pion production channels.
- Data-driven background prediction:
 - A control sample defined by large vertex energy and extra energy deposition than the photon showers.
 - A template fit method to normalize ulletbackgrounds

NC Coherent π⁰

Source	$\delta(\%)$
Calorimetric Energy Scale	3.4
Background Modeling	10.0
Control Sample Selection	2.9
EM Shower Modeling	1.1
Coherent Modeling	3.7
Rock Event	2.4
Alignment	2.0
Flux	9.4
Total Systematics	15.3
Signal Sample Statistics	5.3
Control Sample Statistics	4.1
Total Uncertainty	16.7

Neutrino Energy (GeV)

- Coherent signal measurement by subtracting normalized background from data in energy and angle 2D space.
- Measured flux-averaged cross-section:
 σ = 14.0 ± 0.9(stat.) ± 2.1(syst.)×10⁻⁴⁰cm²/nucleus
- Total uncertainty 16.7%, systematic dominant.
- For more details see arXiv: 1902.00558 (submitted to PRD).

ν_{μ} -CC π^0

- Reporting result as differential cross section as function of Q2 and muon/pion kinematics.
- In general consistent with GENIE.
- Paper in preparation. For more details see <u>https://theory.fnal.gov/</u> <u>events/event/results-from-nova-2/</u>

- Introduction to the NOvA ND and flux.
- Neutral pion measurements
- Inclusive Measurements
- Summary

ν_{μ} -CC Inclusive

Showing a mock data study. Real result coming soon.

- Signal of v_e appearance oscillation measurement.
- Challenge: ν_e is only 1% of the flux. Overwhelming background from ν_μ CC and NC.
- A convolutional neural network (CVN) trained to identify the signal by topology features.
- Cut optimized by minimizing uncertainties.

ν_e -CC Inclusive

- A template fit method is used to measure signal and background.
 - Templates: signal, ν_{μ} -CC, NC.
- Fit to data as function of CVNe in each measurement bin.

ν_e -CC Inclusive

- High and flat signal efficiency thanks to CVNe and the template fit method.
- The goal is to report double differential cross sections as function of electron kinematics which has never been measured before.
- Also very interesting to see the ratio to v_{μ} inclusive.
- Work under internal review.

Summary

- The NOvA ND has an very active cross section physics program.
- 2 publications coming:
 - NC coherent π^0
 - CC π^0
- Inclusive measurements in the final stage.
- Lots of other measurements.
- And expect more in the near future.

Back up slides

The NOvA Experiment

- Long-baseline neutrino oscillation measurements:
 - v_{μ} to v_{e} appearance & v_{μ} disappearance
 - Mass hierarchy, θ_{23} octant, δ_{cp}
 - NC disappearance sterile neutrino search
 - See Erica Smith and Steven Calvez's talk for the latest oscillation results!

ν_{μ} -CC Inclusive Systematic Uncertainties

