

Instituto de Física Teórica UAM-CSIC

Non-WIMP dark matter

Zhen Liu U of Maryland

IFT2019 future collider program Jun. 12

Mass scale of dark matter

(not to scale)

Fig. credit: Tongyan Lin 1904.07915²

Light Dark Matter

Moving beyond WIMPs, the <u>broad</u> vicinity of the weak scale is still an excellent place to focus on:

An important scale!

IFT 2019

- Familiar stable matter resides here!
- Thermal DM works well here!

Zhen Liu (UMD)

non-WIMP

1 limit unitarit GeV **100** Light" DM dark sectors sterile v an be thermal

Many light DM overview discussion from G. Krnjaic

3

Q: What's so great about equilibrium? A: Generic and easy to achieve

Compare interaction rate to Hubble expansion

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{\Lambda^2} (\bar{\chi} \gamma^\mu \chi) (\bar{f} \gamma_\mu f)$$

4

$$H \sim n\sigma v \implies \left. \frac{T^2}{m_{Pl}} \sim \frac{g^2 T^5}{\Lambda^4} \right|_{T=m_{\chi}}$$

Equilibrium is reached in the early universe if

$$g\gtrsim 10^{-8} \left(\frac{\Lambda}{10\,{\rm GeV}}\right)^2 \left(\frac{{\rm GeV}}{m_\chi}\right)^{3/2}$$

Zhen Liu (UN

Nearly all testable models feature equilibrium at early times

Q: What's so great about equilibrium? A: Minimum annihilation rate

$$n_{\chi}^{(eq)} = \int \frac{d^3p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \propto \begin{cases} T^3 & (T \gg m) \\ e^{-m/T} & (T \ll m) \end{cases}$$

$$n_{\chi}^{(eq)} \sim n_{\gamma} \sim T^3$$

$$\int t^{(eq)} \sim e^{-m/T}$$

$$\int t^{(eq)} \sim e$$

 $m/T \text{ (time } \rightarrow)$

Zhen Liu (I

5

... coannihilating DM

Who's Heavier: DM or Mediator?

No clear experimental target Abundance set by g_{χ}

Zhen Liu (UM Mediator decays visibly Motivates hidden force searches Direct Annihilation $m_{\chi} < m_{\rm med}$

Predictive thermal targets Abundance depends on *g*_{SM}

Mediator decays **invisibly*** **Motivates missing energy probes**

6

Neutrality and Renormalizability require "portal" interactions

$$\epsilon \phi H^{\dagger} H \longrightarrow \text{Scalar } \phi \text{ mixes with Higgs after EWSB} \\ \text{Couples to SM masses } \epsilon \phi \frac{m_f}{v} \bar{f} f \\ \epsilon F'_{\mu\nu} F^{\mu\nu} \longrightarrow \text{Dark photon } A' \text{ mixes with SM photon} \\ \text{Couples to EM current } \epsilon A'_{\mu} J^{\mu}_{\text{EM}} \\ \epsilon V_{\mu} J^{\mu}_{\text{SM}} \longrightarrow \text{Vector V directly couples to DM \& SM} \\ \text{Couples to different current } J^{\mu}_{\text{SM}} \\ \text{Anomaly free options } B - L , L_i - L_j , B - 3L_i \end{cases}$$

Zhen Liu (UMI

Vector models all similar, but also couple to neutrinos

Holdom Galison, Manohar

Holdom Galison, Manohar

Millicharged particles (motivation)

Neutrino experiments→ High quality beamdump experiments E.g., NuMI beam: good source for Millicharged particles

Neutrino experiments→ High quality beamdump experiments E.g., NuMI beam: good source for Millicharged particles

Neutrino experiments→ High quality beamdump experiments E.g., NuMI beam: good source for Millicharged particles

4

ArgoNeuT detector: low threshold & high resolution

Look for energy depositions ("clusters") above threshold (~300 keV). Obtain 3D positions of these depositions.

 $\delta y \times \delta x \times \delta z = 5.6 \text{ mm} \times 0.3 \text{ mm} \times 3.2 \text{ mm}.$

Zhen 1

Signal scattering probability and mean free path

$$\frac{d\sigma}{dE_r}\Big|_{E_{\chi}\gg m_{\chi},m_e,E_r} \simeq \frac{2\pi\alpha^2\epsilon^2}{E_r^2m_e}$$

$$(ID) \quad \text{IFT 2019} \ \lambda(E_r^{\min}) \simeq \left(\frac{10^{-2}}{\epsilon}\right)^2 \left(\frac{E_r^{\min}}{1 \text{ MeV}}\right) \ 1 \text{ km}$$

Zhen Liu (UMD)

BKG target screen distribution 100 000 For data within 1000 meters, making up 60.9% of the total data 50 000 0 -50 000 $-100\,000$

100 000

50000

0

Zhen Liu (UMD) IFT 2019 non-WIMP

 $-50\,000$

 $-100\,000$

Expected reach

Zhen Liu (Ul

Harnik, Liu, Palamara, 1902.03246

How about DUNE ND?

300 times more POT 240 times larger detector Factor of two closer to the target

Should be very promising!

Background scale non-trivially for DUNE ND

		Bkg reduction	# frames with			# Background events					
	Bkg Scaling		≥ 0 hit	≥ 1 hits	≥ 2 hits	Singlets	Doublets	Aligned	Triplets	Aligned	
								doublets		triplets	
$\operatorname{ArgoNeuT}$	Reference	Systematic	3.3×10^6	3.9×10^5	2.4×10^4	4.2×10^5	2.7×10^4	0.24	1.1×10^3	9.1×10^{-8}	
DUNE ND	Volume	Systematic	1×10^{8}			4.5×10^9	1.0×10^{11}	1.4×10^4	1.6×10^{12}	0.030	
		Statistic						$\sqrt{1.4\times10^4}$		0.030	
		Timed	1×10^{10}	3.6×10^9	$7.6 imes 10^8$		$1.0 imes 10^9$	$\sqrt{1.4\times10^2}$	$1.6 imes 10^8$	3.0×10^{-6}	
	$Vol. \times Int.$	Systematic		1×10^{8}			1.6×10^{14}	2.2×10^7	0.2×10^{16}	1.8×10^3	
		Statistic	1 × 10			1.8×10^{11}	1.0 × 10	$\sqrt{2.2\times 10^7}$	3.3×10	$\sqrt{1.8\times10^3}$	
		Timed	1×10^{10}				1.6×10^{12}	$\sqrt{2.2\times10^5}$	9.3×10^{12}	0.18	

Average occupation number per frame: ArgoNeuT: 0.13 non-WIMP **DUNE ND: 45–1800**

IFT 2019

DUNE ND 1-hit projections

Background scale non-trivially for DUNE ND

			# frames with			# Background events				
	Bkg Scaling	Bkg reduction	≥ 0 hit	≥ 1 hits	≥ 2 hits	Singlets	Doublets	Aligned	Triplets	Aligned
								doublets		triplets
$\operatorname{ArgoNeuT}$	Reference	Systematic	3.3×10^6	3.9×10^5	2.4×10^4	4.2×10^5	2.7×10^4	0.24	1.1×10^3	$9.1 imes 10^{-8}$
DUNE ND	Volume	Systematic	1×10^{8}			4.5×10^9	1.0×10^{11}	1.4×10^4	1.6×10^{12}	0.030
		Statistic						$\sqrt{1.4 \times 10^4}$		0.030
		Timed	1×10^{10}	3.6×10^9	7.6×10^8		$1.0 imes 10^9$	$\sqrt{1.4 \times 10^2}$	1.6×10^8	3.0×10^{-6}
	$Vol. \times Int.$	Systematic		1×10^{8}			1.6×10^{14}	2.2×10^7	0.3×10^{16}	1.8×10^3
		Statistic	1 × 10			1.8×10^{11}	1.0 × 10	$\sqrt{2.2\times10^7}$	0.0 × 10	$\sqrt{1.8\times10^3}$
		Timed	$1 imes 10^{10}$				1.6×10^{12}	$\sqrt{2.2 \times 10^5}$	9.3×10^{12}	0.18

Average occupation number per frame: ArgoNeuT: 0.13

non-WIMP **DUNE ND: 45–1800**

IFT 2019

DUNE ND double hit coverage

Active research field, see new works ArgoNeuT result coming, I. Lepetic

DUNE ND double hit coverage

HNL a unique Physics case & LLP benchmark

HNL are a well-motivated prototype LLP they have to be studied as thoroughly as possible!

- Singly produced LLP
- Low mass LLP
- Prompt lepton trigger highly efficient
- Boosted low mass LLPs "fails" "traditional" hard & slow displaced vertex searches

$$\Delta \mathcal{L}_{\nu} = -\lambda_{\nu} \bar{L} \tilde{H} N - \frac{m_N}{2} \bar{N}^c N + h.c.$$

The lepton behaviors

- Prompt lepton hard-ish
- Displaced lepton soft-ish

The lepton behaviors

Required decay within R=0.5m to have good tracks

- Large do cut, smaller signal efficiency;
- For short lifetime, >10 GeV sterile neutrinos behave similarly;
- For long lifetime, heavier sterile neutrinos are slower and hence higher decay probability within the tracker;
- For mN=1 GeV, decay product too collimated, suffering low do;

Valuable knowledge from a SUSY search

Valuable knowledge from a SUSY search

Our search and projected sensitivity

Efficiency	$\sigma^{\rm ncut} ({\rm pb})$	$N_{b}^{30} = 0$	$N_j^{20} < 2$	$N_j^{50} = 0$	$H_T^{\rm vis} < 100~{\rm GeV}$	$p_T^{\ell_1} > 19 {\rm GeV}$	$p_T^{\ell_2} > 10.5 {\rm GeV}$	$\epsilon_{ m opt}$
$t\bar{t} \to b\bar{b} + \ell + X$	136	0.25	0.08	0.62	0.43	0.055	0.42	$1.2 imes 10^{-4}$
$W + b\bar{b}, W \to \ell\nu$	3.8	0.40	0.60	0.76	0.40	0.27	0.29	$5.7 imes 10^{-3}$

Results

- Non-zero background at HL-LHC: ~ 2K
- Interesting expansion of the LHC coverage to lower masses (< 5 GeV) by taking the heavy flavor background directly;
- A example of "serious" pheno new search studies on LLPs can be done at the LHC;

Strong CP puzzle can lead to long-lived axions

$$L \supset \frac{\alpha_s}{4\pi} \theta \tilde{G} G + y_u \bar{Q}_L \tilde{H} u_R + y_d \bar{Q}_L H d_R$$

 $\bar{\theta} \equiv \theta + \operatorname{ArgDet}[Y_u Y_d] \le 10^{-10}$

While ArgDet[$Y_u Y_d$] anticipated around $\delta_{CKM} \sim O(1)$

Strong CP puzzle of QCD

Dynamical solution: QCD Axion *a* as a pseudo Nambu-Goldstone boson

$$\frac{\alpha_s}{4\pi} \left(\theta - \frac{a}{f_a}\right) \tilde{G}G$$

Zhen Liu (UMD) IFT 2019 non-WIMP

Strong CP puzzle can lead to long-lived axions

Strong CP puzzle can lead to long-lived axions !

Dynamical solution: QCD Axion *a* as a pseudo Nambu-Goldstone boson

Ultralight DM: dark photon & ALP

Well motivated theories:

- Dark Photons
- Axions and ALPs

Well motivated searches:

 10^{-22}

- Light mediators
- Dark matter

WDI

QCD axion classic window

 $10^{-6} - 10^{-4} \, eV$

``Ultralight" DN

non-thermal

bosonic fields

Dark Photons

- Imagine another photon, with a different mass.
 - Common in top-down frameworks.
- *Any* heavy particle that is charged both photons will generate mixing.

$$\gamma \sim \gamma \sim \gamma'$$

$$\mathcal{L} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + F'_{\mu\nu} F'^{\mu\nu} - 2\epsilon F_{\mu\nu} F'^{\mu\nu} \right) + \dots \supset \epsilon \left(\vec{E} \cdot \vec{E}' + \vec{B} \cdot \vec{B}' \right)$$

An oscillating EM field is a source of dark photons,

Zhen

and vice versa. (reminiscent of neutrino oscillations)

Axion-like particles

- Imagine an approximate symmetry broken at a high scale *f*.
 → a pseudo-Goldstone Boson ≃ an axion-like particle.
- Common in top-down constructions, the axion is invoked to solve the strong CP problem.
- Loops of heavy charged particles can generate interaction:

Axions and photons mix in a magnetic field. An oscillating E · B is a source of dark photons.

Longer Range Interactions and Wave-like Dark Matter

 Both axion-like particles and dark photons are well motivated as mediators of long range interactions that can be searched for.

$$\mathcal{L} \supset$$
 dark photons? axions?

- Both axion-like particles and dark photons are dark matter candidates.
- In the Wave-like DM category. Oscillating at $\omega = m_{DM}$.

○ dark photons? axions?

Searches with SRF Cavities

- Fermilab's SRF Cavities are world's highest quality photon resonators, with Q as high as 10¹¹:
 - Large fields when excited → can source dark fields.
 - Resonant response \rightarrow can amplify a feeble signal.

Dark Photon Search

a dark photon field is radiated at 1.3 GHz.

Receiver Cavity

Emitter Cavity

Frequency of 1.3 GHz, excited to ~ 35 MV/m. Thats ~ 10²⁵ Photons! Tuned to 1.3 GHz. Responds to dark field. Contains only thermal noise (T=1.4 K).

For correct cavity positioning $P_{\rm rec} \sim G^2 \epsilon^4 \left(\frac{m_{\gamma'}}{\omega}\right)^4 Q_{\rm rec} Q_{\rm em} P_{\rm em}$

Zhen Liu

[see Graham, Mardon, Rajendran, Zhao 2014]

43

A Dark Photon Search

Zhen Liu (U

"Run o" results summary

Everything works!

- ✓ Design
- ✓Tuner operation
- ✓ Microwave scheme for matching the frequencies
- ✓ Actual data first acquisition

Dielectric haloscopes

Image from R. Lasenby

46

DM can Bragg-convert in medium, producing photons:

mirror

m_A/eV

Ultralight DM

Suppose DM consists entirely of a single, very light field.

Locally, this will essentially look like a coherent wave acting across the whole array.

 $\mathcal{L}_{int} = g_{B-L} A \overline{n} n$

$$F = g_{B-L} N_n F_0 \sin(\omega_s t)$$

Back-action evasion measurement of velocity

 \rightarrow Light phase ~ x(t₁)-x(t₂) ~ v, momentum transfer ~ 0.

WIP w/ A. Hook, Z. Liu, J. Taylor (UMD), Y. Zhao (Utah) & discussions w/ D. Moore (Yale)

SNR ~ $1/sqrt(N_{total}) \rightarrow$ huge win via scaling (signal = coherent oscillation of entire lattice)

Here plotting mg-scale detectors operating "just" at SQL.

Backaction-evasion improves high-frequency limits.

Summary

Lots of opportunities!

Backup

3

