B-anomalies: status and implications

Joaquim Matias

IFT-Workshop

in collaboration with: M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Virto.

Madrid, 18th June 2019

Outline & Questions

- 1. Diagnosis of anomalies: Where we stand?
- 2. A comparative study of Pre and Post Moriond

-Are now all the global significances smaller?-Are new emerging hypothesis?-Brief Comparison with other analysis.

- 3. Lepton Flavour Universal (LFU) New Physics -Two kinds of New Physics? Maybe two scales?
- 4. Linking charge, neutral and LFU New Physics.
- 5. Solutions proposed to the anomalies
- 6. What's next? Q_5
- 7. Conclusions

Diagnosis of anomalies in $b \to s \ell \ell$

Model independent approach to $b ightarrow s\ell\ell$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i \\ \mathcal{O}_7 &= \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}, \\ \mathcal{O}_{7'} &= \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu}, \\ \mathcal{O}_{9\ell} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \ell), \\ \mathcal{O}_{9\ell'} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\ell}\gamma^\mu \ell), \\ \mathcal{O}_{10\ell} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell), \\ \mathcal{O}_{10\ell'} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\ell}\gamma^\mu \gamma_5 \ell), \\ \mathcal{A} t \text{ the } \mu_b = 4.8 \text{ GeV scale:} \end{aligned}$$

$$\begin{aligned} \mathcal{C}_{7}^{\text{SM}} &= -0.29, \ \mathcal{C}_{9}^{\text{SM}} &= 4.1, \ \mathcal{C}_{10}^{\text{SM}} &= -4.3 \end{aligned}$$

The starting point: Angular distribution

4-body angular distribution $\bar{\mathbf{B}}_{\mathbf{d}} \rightarrow \bar{\mathbf{K}}^{*0} (\rightarrow \mathbf{K}^{-} \pi^{+}) \mathbf{l}^{+} \mathbf{l}^{-}$ with three angles, invariant mass of lepton-pair q^{2} .

 θ_{ℓ} : Angle of emission between \bar{K}^{*0} and μ^{-} in di-lepton rest frame. $\theta_{\mathbf{K}}$: Angle of emission between \bar{K}^{*0} and K^{-} in di-meson rest frame. ϕ : Angle between the two planes.

q²: dilepton invariant mass square.

$$\frac{d^4\Gamma(\bar{B}_d)}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_K \, d\phi} = \frac{9}{32\pi} \sum_i J_i(q^2) f_i(\theta_\ell, \theta_K, \phi)$$

$$J_i(q^2) \text{ function of transversity (helicity) amplitudes of K^*: } A^{L,R}_{\perp,\parallel,0} \text{ but also } A_t, A_S$$

 $A_{\perp,\parallel,0}^{L,R} = C_i$ (short) × Hadronic quantities (long)

The starting point: Angular distribution

4-body angular distribution $\bar{\mathbf{B}}_{\mathbf{d}} \rightarrow \bar{\mathbf{K}}^{*0} (\rightarrow \mathbf{K}^{-} \pi^{+}) \mathbf{l}^{+} \mathbf{l}^{-}$ with three angles, invariant mass of lepton-pair q^{2} .

 θ_{ℓ} : Angle of emission between \bar{K}^{*0} and μ^{-} in di-lepton rest frame. $\theta_{\mathbf{K}}$: Angle of emission between \bar{K}^{*0} and K^{-} in di-meson rest frame. ϕ : Angle between the two planes.

 \mathbf{q}^{2} : dilepton invariant mass square.

$$\frac{d^4\Gamma(\bar{B}_d)}{dq^2\,d\cos\theta_\ell\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi} \sum_i J_i(q^2)f_i(\theta_\ell,\theta_K,\phi)$$

 $J_i(q^2)$ function of transversity (helicity) amplitudes of K*: $A_{\perp,\parallel,0}^{L,R}$ but also A_t, A_S $A_{\perp,\parallel,0}^{L,R} = C_i$ (short) × Hadronic quantities (long)

$$\frac{1}{\Gamma_{full}'} \frac{d^4 \Gamma}{dq^2 d\cos \theta_K d\cos \theta_l d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} \mathbf{F_T} \sin^2 \theta_K + \mathbf{F_L} \cos^2 \theta_K + (\frac{1}{4} \mathbf{F_T} \sin^2 \theta_K - \mathbf{F_L} \cos^2 \theta_K) \cos 2\theta_l + \sqrt{\mathbf{F_T} \mathbf{F_L}} \left(\frac{1}{2} \mathbf{P'_4} \sin 2\theta_K \sin 2\theta_l \cos \phi + \mathbf{P'_5} \sin 2\theta_K \sin \theta_l \cos \phi \right) + 2 \mathbf{P_2} \mathbf{F_T} \sin^2 \theta_K \cos \theta_l + \frac{1}{2} \mathbf{P_1} \mathbf{F_T} \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi_l + \sqrt{\mathbf{F_T} \mathbf{F_L}} \left(\mathbf{P'_6} \sin 2\theta_K \sin \theta_l \sin \phi - \frac{1}{2} \mathbf{P'_8} \sin 2\theta_K \sin 2\theta_l \sin \phi \right) - \mathbf{P_3} \mathbf{F_T} \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \left(1 - \mathbf{F_S} \right) + \frac{1}{\Gamma_{full}'} \mathbf{W_S}$$

[SDG,JM,JV,1207.2753]

[SDG,JM,JV,1207.2753]

Theoretical framework: QCDF/SCET+**robust large-recoil symmetries** +breaking (pert+non-pert) \hookrightarrow independent of LCSR details

$$\mathcal{T}_{a} = \xi_{a} \left(C_{a}^{(0)} + \frac{\alpha_{s} C_{F}}{4\pi} C_{a}^{(1)} \right) + \frac{\pi^{2}}{N_{c}} \frac{f_{B} f_{K^{*},a}}{M_{B}} \Sigma_{a} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_{0}^{1} du \Phi_{K^{*},a}(u) T_{a,\pm}(u,\omega). \quad a = \bot, \|$$

 ξ_a (soft FF). $C_i = 1 + O(\alpha_s)$ hard-vertex renormalization and T_i hard-scattering kernels computed in α_s -expansion. Φ_i light-cone wave functions. Two types of non-factorizable contributions:

• Hard spectator scattering (T_a) : matrix elements of 4-quark op. and the chromomagnetic O_8 operator

Perturbative and non-perturbative charm

Problem: Charm-loop yields a (most likely) q^2 – and process-dependent contribution with $O_{7,9}$ structures that may (in a local analysis of data) mimic New Physics.

 $C_{9i}^{\text{eff}}(q^2) = \mathbf{C}_{9SMpert} + C_9^{NP} + \mathbf{s_i} \delta \mathbf{C}_{9i}^{\mathbf{c}\bar{\mathbf{c}}\mathbf{L}\mathbf{D}}(\mathbf{q^2}). \qquad \mathbf{i} = \bot, \|, \mathbf{0}$

Perturbative: $C_{9 \text{ SMpert}} = C_9^{\text{SM}} + Y(q^2)$ with $Y(q^2)$ stemming from one-loop matrix elements of 4-quark operators O_{1-6} $\mathcal{O}(\alpha_s)$ corrections to $C_{7,9}^{\text{eff}}$ of $Y(q^2)$ included via $C_{\perp,\parallel}^{1 \text{ (nf)}}$ but only $O_{1,2}$ (previous slide)

Non-perturbative: $\delta C_{9i}^{c\bar{c}LD}(q^2)$

More difficult to make progress here:

- 1 Use LCSR to estimate long-distance contribution with soft-gluon exchange. \Rightarrow
- 2 Or use fits to the same data you want to explain [Ciuchini, Silvestrini et al.] \Rightarrow

A bright future: LHCb ultimate precision expected in RUNII

Projections from LHCb for P'_5 in Phase-II Upgrade.

A large number of small bins open the window in P'_5 for another observable: zero of P'_5 .

At LO:

$$q_0^2 = -rac{m_b m_B^2 \mathcal{C}_7^{ ext{eff}}}{m_b \mathcal{C}_7^{ ext{eff}} + m_B \mathcal{C}_9^{ ext{eff}}(q_0^2)}$$

zero not sensitive to C_{10} (at LO).

At NLO:

• Large shift of zero of P_5' from $q_0^{2SM} \simeq 2 \text{ GeV}^2$ to $q_0^{C_9^{\rm NP} = -1.76} \simeq 3.8 \text{ GeV}^2$.

Diff. Branching Ratios: Lepton Flavour Dependent

$B_s \rightarrow \phi \mu \mu vs B \rightarrow K^* \mu \mu$: Lepton Flavour Dependent

with corrected BSZ FF

Not yet significant: FF at low-q² for $B_s \rightarrow \phi$ (BSZ) larger than $B \rightarrow K^*$, while data is reversed. Ok at high-q². **BSZ problem or statistical fluctuation**?

Our prediction for $B \rightarrow K^*$ with KMPW has larger errors so **no problem in our case**.

More data will clarify it....

R_K : Lepton Flavour Universality Violation

FCNC, **test of universality** of lepton coupling, potential high sensitivity to NP contributions.

First possible signal of LFUV ... after LHCb update

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054} + 0.016_{-0.014}$$

Simple structure of BR: $f_{+,0,T} \rightarrow f_+$

dominates while the other two suppressed by lepton mass or C₇. => **Good observable in presence NP** => tensions cannot be explained by FF or charm. Electromagnetic small. [Isidori et al.]

Does a more SM-like central value imply a reduction in significance?

R_K : Lepton Flavour Universality Violation

FCNC, test of universality of lepton coupling, potential high sensitivity to NP contributions.

First possible signal of LFUV ... after LHCb update

 $R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054} + 0.016_{-0.054}$

Simple structure of BR: $f_{+,0,T} \rightarrow f_+$

dominates while the other two suppressed by lepton mass or C₇. => Good observable in presence NP => tensions cannot be explained by FF or charm. Electromagnetic small. [Isidori et al.]

Does a more SM-like central value imply a reduction in significance?

R_{K^*} : Lepton Flavour Universality Violation

Updated global analysis of $\,b \to s\ell\ell\,$

... hopefully now the race for the right pattern

include additional interesting horses than just the old guys: C_9 and $C_9=-C_{10}$

178 observables from (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

• $B \to K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic obs.

...latest update $Br(B \rightarrow K^* \mu \mu)$ in small bins.

...LHCb results on R_{K^*}

- $B_s \rightarrow \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \ell \ell$ (BR) ($\ell = e, \mu$) (new average $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$ (BR).
- Radiative decays: $B^0 \to K^{*0}\gamma$ (A_I and $S_{K^*\gamma}$), $B^+ \to K^{*+}\gamma$, $B_s \to \phi\gamma$
- ► Belle measurements for the isospin-averaged but lepton-flavour dependent $(Q_{4,5} = P_{4,5}'^{\mu} P_{4,5}'^{e})$: [3rd test of LFUV]

$$P_i^{\prime \ell} = \sigma_+ P_i^{\prime \ell}(B^+) + (1 - \sigma_+) P_i^{\prime \ell}(\bar{B}^0) \qquad \sigma_+ = 0.5 \pm 0.5$$

similar treatment of new Belle isospin-averaged result on R_{K^*} (3-bins)

▶ ATLAS measurement of whole basis of P_i and CMS measurements of P_1 and P'_5 .

► ATLAS update of $B_s \rightarrow \mu\mu$ (averaged with LHCb & CMS) and latest f_{Bs} lattice update.

Implications of the new updates on $R_{\rm K},\,R_{\rm K^*},\,B_{\rm S}{\rightarrow}\mu\mu$

 $\text{Pull}_{\text{SM}}: \chi^2_{\text{SM}}(C_i=0)-\chi^2 \text{min}(C_i^{\text{HIP}}) \text{ considering } N_{\text{dof}}$

- Hierarchy remains invariant except $C_{9\mu} = -C_{9'\mu}$ scenario $(R_K \approx 1)$
 - Scenario $C_{9\mu}$ preferred in "All" fit Scenario $C_{9\mu}$ = - $C_{10\mu}$ preferred in "LFUV" fit.
- Best fit points for All and LFUV fits in scen. $C_{9\mu}$ in nice agreement
- Scenario $C_{10\mu}$ stays at a significance of $\approx 4\sigma$ for All and LFUV fits.

Implications of the new updates on $R_{\rm K},\,R_{\rm K^*},\,B_{\rm s}{\rightarrow}\mu\mu$

Interesting surprises in 2D updates...

2017	All			LFUV		
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	Best fit	Pull_{SM}	p-value
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}')$	(-1.13, 0.01)	5.5	69	(-1.85,-0.04)	3.6	66
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.15, 0.41)	5.6	71	(-1.99, 0.93)	3.7	72
$\left \left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu} ight) ight $	(-1.22, -0.22)	5.7	72	(-2.22,-0.41)	3.9	85
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9e}^{\mathrm{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65
Hyp. 1	(-1.16, 0.38)	5.7	73	(-1.68, 0.60)	3.8	78
Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37
Hyp. 3	(-0.67, -0.10)	5.0	57	(0.61, 2.48)	3.7	73
Hyp. 4	(-0.70, 0.28)	5.0	57	$\left (-0.74, 0.43) \right $	3.7	72
2019		All			LFUV	
2D Hyp.	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value	Best fit	Pull _{SM}	p-value
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-0.95, 0.20)	5.7	69.5 %	(-0.30,0.52)	3.6	74.5%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}')$	(-1.03, 0.02)	5.6	68.2%	(-1.03,-0.04)	3.1	53.7%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.13, 0.54)	5.9	74.5%	(-1.88,1.14)	3.6	75.7%
$(\mathcal{C}_{9\mu}^{\rm NP},\mathcal{C}_{10'\mu})$	(-1.17, -0.34)	6.1	78.1%	(-2.07,-0.63)	4.0	92.8%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.04,-0.11)	5.5	65.3%	(-0.76.9.25)	3.1	50.8%
Hyp. 1	(-1.09, 0.28)	6.0	75.8%	(-1.69,0.32)	3.6	77.1%
Hyp. 2	(-1.00,0.09)	5.4	63.9%	(-2.00,0.26)	3.3	61.2%
Hyp. 3	(-0.50, 0.08)	5.1	55.8%	(-0.43,-0.09)	3.6	74.5%
Hyp. 4	(-0.52,0.11)	5.2	58.7%	(-0.50,0.15)	3.7	81.9%
Hyp. 5	(-1.17,0.24)	6.1	78.2%	$\ $ (-2.20,0.52)	4.1	93.8%

 Increase in significance in scenarios with RHC

- R_K more SM-like better described if C_{9'µ}>0 and C_{10'µ}<0
- A $R_q \otimes L_\ell$ structure for primed operators prefers a V over a L_ℓ structure for leptons.
- Hyp.1 is SM-like for $B_s \rightarrow \mu \mu$ but perfect for $R_K!$

Hyp. 1: $(\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{NP} = \mathcal{C}_{10'\mu}),$ Hyp. 2: $(\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{NP} = -\mathcal{C}_{10'\mu}),$ Hyp. 3: $(\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{10\mu}^{NP}, \mathcal{C}_{9'\mu} = \mathcal{C}_{0'\mu}),$ Hyp. 4: $(\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{10\mu}^{NP}, \mathcal{C}_{9'\mu} = -\mathcal{C}_{10'\mu})$ Hyp. 5: $(\mathcal{C}_{9\mu}^{NP}, \mathcal{C}_{9'\mu} = -\mathcal{C}_{10'\mu}).$

How can we test the presence of RHC $(C_9' \text{ and } C_{10}')$?

An accurate measurement:

Observable P_1 in two bins

Implications of the new updates on RK, RK*, $B_s \rightarrow \mu \mu$

Let's check how the 6D fit has evolved:

2017	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$	
Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02	
1σ	[-0.01, +0.05]	[-1.34, -0.88]	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]	
2σ	[-0.03, +0.07]	[-1.54, -0.63]	[-0.08, +0.84]	[-0.02, +0.08]	[-0.59, +1.58]	[-0.54, +0.68]	
2019	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$	
Best fit	+0.02	-1.13	+0.21	+0.02	+0.39	-0.12	
1 σ	[-0.01, +0.05]	[-1.28, -0.91]	[+0.04, +0.42]	[+0.00, +0.04	[-0.09, +0.9]	[-0.40, +0.17]	
2σ	[-0.03, +0.06]	[-1.48, -0.71]	[-0.12, +0.61]	[-0.02, +0.06]	$[6] \mid [-0.56, +1.1]$	$[4] \mid [-0.57, +0.34]$	

• Again **same picture**,

-except change in sign of bfp of $C_{10'\mu}$ -except significance 5.0 σ \rightarrow **5.3** σ

Implications of the new updates on $R_{\rm K},\,R_{\rm K^*},\,Bs{\rightarrow}\mu\mu$

It is then natural to expect some impact in the significance of LFUV+LFU scenarios

Flavour observables are sensitive to higher scales than direct searches at colliders

... if NP affects flavour it is not surprising that we detect it first.

What is the scale of NP for $b \to s\ell\ell$? Reescaling the Hamiltonian by $H_{eff}^{NP} = \sum \frac{\mathcal{O}_i}{\Lambda_i^2}$

• Tree-level induced (semi-leptonic) with $\mathcal{O}(1)$ couplings ($\times \sqrt{g_{bs} g_{\mu\mu}}$):

$$\Lambda_{i}^{\text{Tree}} = \frac{4\pi v}{s_{w}g} \frac{1}{\sqrt{2|V_{tb}V_{ts}^{*}|}} \frac{1}{|C_{i}^{\text{NP}}|^{1/2}} \sim \frac{\mathbf{35\text{TeV}}}{|C_{i}^{\text{NP}}|^{1/2}}$$

• Loop level-induced (semi-leptonic) with $\mathcal{O}(1)$ couplings:

$$\Lambda_i^{\text{Loop}} \sim \frac{35 \text{TeV}}{4\pi |C_i^{\text{NP}}|^{1/2}} = \frac{2.8 \text{TeV}}{|C_i^{\text{NP}}|^{1/2}}$$

• MFV with CKM-SM, suppression $\sqrt{|V_{tb}V_{ts}^*|} \sim 1/5$: Tree level: $\frac{7 \text{ TeV}}{|C_i^{\text{NP}}|^{1/2}}$ and Loop: $\frac{0.6 \text{ TeV}}{|C_i^{\text{NP}}|^{1/2}}$ Solution $C_9^{\text{NP}} \sim -1.1$ (scale is ~ numerator) or $C_9^{\text{NP}} = -C_{10}^{\text{NP}} \sim -0.6$ (30 % higher scale). Similar exercise for $b \to c\tau\nu$ taking a 15% enhancement over SM:

$$\Lambda^{\rm NP} \sim 1/(\sqrt{2}G_F |V_{cb}| 0.15)^{1/2} \sim 3.2 \,{\rm TeV}$$

Are we overlooking Lepton Flavour Universal NP?

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

Hypothesis: Lepton Flavour Universality

We traded the usual controversy:

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

Is this New Physics or long-distance charm?

by a more constructive question:

Are we observing two kinds of New Physics?

$$\mathcal{C}_{i\ell}^{NP} = \mathcal{C}_{i\ell}^{V} + \mathcal{C}_{i}^{U}$$
 with $i = 9, 10$ $\ell = e, \mu$

 $C_{ie}^{V} = 0$ Lepton Flavour **Universal** NP Lepton Flavour Universal **Violating** NP

....extended to primed operators in [Addendum: 1903.09578v3]

Motivation:

We have LFUV and LFD observables, then it is natural to split:

$$\mathcal{C}_{i\ell}^V \qquad \qquad \mathcal{C}_{i\ell}^V + \mathcal{C}_i^U$$

New mechanism to fulfill B_s \rightarrow $\mu\mu$

Is this the same as adding NP in electrons?

Many previous works already included NP in electrons: Mahmoudi et al. (large and low recoil data) London et al. (large and low recoil data) Ciuchini et al. (only large recoil data)

Which is the difference with our proposal?

All previous analyses explored directions within 2D planes in coordinates $(C_{9\mu}, C_{10\mu})$ and (C_{9e}, C_{10e})

instead the plane in coordinates (C_9^v, C_{10}^v) in presence for instance of C_9^v LFU can translate in a tilted plane in $(C_{9\mu}, C_{10\mu}, C_{9e})$ coordinates

LFU updates 2019

1809.08447		Best-fit point	1 <i>σ</i>	Pull _{SM}	p-value
Sc. 5	$\mathcal{C}_{9\mu}^{V} \ \mathcal{C}_{10\mu}^{V} \ \mathcal{C}_{9}^{U} = \mathcal{C}_{10}^{U}$	-0.16 +1.00 -0.87	$\begin{matrix} [-0.94, +0.46] \\ [+0.18, +1.59] \\ [-1.43, -0.14] \end{matrix}$	5.8	78%
Sc. 6	$egin{aligned} \mathcal{C}^{\mathrm{V}}_{9\mu} &= -\mathcal{C}^{\mathrm{V}}_{10\mu} \ \mathcal{C}^{\mathrm{U}}_{9} &= \mathcal{C}^{\mathrm{U}}_{10} \end{aligned}$	-0.64 -0.44	[-0.77, -0.51] [-0.58, -0.29]	6.0	79%
Sc. 7	$\mathcal{C}^{\mathrm{V}}_{9\mu}\ \mathcal{C}^{\mathrm{U}}_{9}$	-1.57 +0.56	[-2.14, -1.06] [+0.01, +1.15]	5.7	72%
Sc. 8	$egin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu} \ \mathcal{C}^{\mathrm{U}}_{9} \end{array} \end{array}$	-0.42 -0.67	[-0.57, -0.27] [-0.90, -0.42]	5.8	74%
	2019	Best-fit point	1 σ		p-value
Sc. 5	$\mathcal{C}^{\mathrm{V}}_{9\mu}\ \mathcal{C}^{\mathrm{V}}_{10\mu}\ \mathcal{C}^{\mathrm{U}}_{9}=\mathcal{C}^{\mathrm{U}}_{10}$	-0.34 +0.69 -0.50	$ \begin{bmatrix} -0.93, +0.19 \\ [+0.21, +1.12] \\ [-0.92, +0.02] \end{bmatrix} $	5.5	72%
Sc. 6	$\mathcal{C}^{ m V}_{9\mu} = - \mathcal{C}^{ m V}_{10\mu} \ \mathcal{C}^{ m U}_{9} = \mathcal{C}^{ m U}_{10}$	-0.52 -0.37	[-0.64, -0.41] [-0.52, -0.22]	5.8	71%
Sc. 7	$\mathcal{C}^{V}_{9\mu}\ \mathcal{C}^{U}_{9}$	-0.91 -0.08	[-1.25, -0.58] [-0.46, +0.31]	5.5	65%
Sc. 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$ $\mathcal{C}_{9}^{\mathrm{U}}$	-0.33 -0.72	$\begin{bmatrix} -0.45, -0.22 \\ [-0.93, -0.47] \end{bmatrix}$	5.9	74%

Changed

Sc. 7: If only V-NP (C_9) now preference for LFUV-C₉

$$\mathcal{C}_{9\mu}^V + \mathcal{C}_9^U = -0.98$$

Unchanged

Sc. 8: A LFUV left-handed lepton struc. $(C_9^V=-C_{10}^V)$ **yields a better description** with LFU-NP in C₉.

Still

Sc. 6: A LFUV V-A struc. $(C_9^{v}=-C_{10}^{v})$ and a LFU V+A struc. provides a good description of data.

• LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

[1903.09578]

Scenario		Best-fit point	1σ	Pull _{SM}	p-value
Sc. 9	$\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.63	[-0.79, -0.47]	5.3	73.4%
	\mathcal{C}_{10}^{0}	-0.39	[-0.65, -0.13]		
Sc 10	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.99	[-1.17, -0.80]	57	69.7%
00.10	$\mathcal{C}_{10}^{\mathrm{U}}$	+0.29	[0.10, 0.48]	0.1	
Sc. 11	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.07	[-1.25, -0.88]	5.0	73 0 %
50.11	$\mathcal{C}_{10'}^{\mathrm{U}}$	-0.31	[-0.48, -0.13]	0.9	10.970
Sc. 12	$\mathcal{C}_{9'\mu}^{V}$	-0.05	$\left[-0.23, 0.14\right]$	17	131%
50.12	${\cal C}_{10}^{ m U}$	+0.43	$\left[0.22, 0.65\right]$	1.1	10.1 /0
Sc. 13	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.12	[-1.29, -0.94]		
	$\mathcal{C}^{\mathrm{V}}_{9'\mu}$	+0.48	$\left[0.19, 0.85\right]$	56	78 7 %
	\mathcal{C}_{10}^{U}	+0.26	[0.01, 0.50]	0.0	10.1 /0
	$\mathcal{C}^{\mathrm{U}}_{10'}$	-0.05	[-0.28, 0.18]		

- Sc. 9 versus Sc.10 preference of C_9^V versus $C_9^{V=-}C_{10}^V$ in presence of C_{10}^U , opposite to the case of C_9^U (sc.7-8).

Sc. 10 versus Sc.11 shows a slight preference of C_{10} ,^U over C_{10} ^U.

- Sc.12 irrelevance of RHC without C_9^{v} . If $C_{10}^{v} \rightarrow C_9^{v}$ then 4σ

Changed

Sc. 7: If only V-NP (C_9) now preference for LFUV-C₉

$$\mathcal{C}_{9\mu}^V + \mathcal{C}_9^U = -0.98$$

Unchanged

Sc. 8: A LFUV left-handed lepton struc. $(C_9^{V}=-C_{10}^{V})$ **yields a better description** with LFU-NP in C₉.

New

Sc.9-13: We extend the universal contribution also to **primed universal coefficients** associated to models.

• Sc.7-10 show LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

Assuming loop-level
scale of NP and no MFV
$$\Lambda_i^L \sim \frac{v}{s_w g} \frac{1}{\sqrt{2|V_{tb}V_{ts}^*|}} \frac{1}{|\mathcal{C}_i^{NP}|^{1/2}}$$
$$Mild preference$$
$$Scenario 6: \qquad \begin{pmatrix} \mathcal{C}_{9\mu}^v = -\mathcal{C}_{10\mu}^v \\ \mathcal{C}_{9}^v = \mathcal{C}_{10}^{U} \end{pmatrix}$$
$$LFUV-NP \quad L_q \otimes L_\ell$$
$$\Lambda_i^{\text{LFUV}} \sim 3.9 \text{ TeV}$$
$$LFU-NP \quad L_q \otimes R_\ell$$
$$\Lambda_i^{\text{LFU}} \sim 4.6 \text{ TeV}$$
$$Scenario 8: \qquad \begin{pmatrix} \mathcal{C}_{9\mu}^v = -\mathcal{C}_{10\mu}^v \\ \mathcal{C}_{9}^v = \mathcal{C}_{10\mu}^v \end{pmatrix}$$
$$LFUV-NP \quad L_q \otimes L_\ell$$
$$\Lambda_i^{\text{LFU}} \sim 4.6 \text{ TeV}$$
$$LFUV-NP \quad L_q \otimes L_\ell$$
$$\Lambda_i^{\text{LFUV}} \sim 4.6 \text{ TeV}$$
$$LFU-NP \quad L_q \otimes V_\ell$$
$$\Lambda_i^{\text{LFUV}} \sim 3.3 \text{ TeV}$$

- If we are in presence of two types and scales of NP, their hierarchy depend on the LFU

Results from other analysis

[Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub]

Similar results in general terms **but** 1D differences. Why?

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime b s \mu \mu}$	+0.09	[-0.07, +0.24]	[-0.23, +0.39]	0.5σ
$C^{bs\mu\mu}_{10}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41, +0.04]	1.6σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	+0.20	[+0.05, +0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.62, -0.45]	[-0.70, -0.36]	6.5 <i>σ</i>

 Difference in observable sets: BR(b→ sℓℓ) (B, B_s, h_b (BR, P_i), R_{K(*)}, b→ sγ favours mildly C_{9µ} = -C_{10µ}
 But latest Belle updates on P₅' and Q₅ are missing
 Extra assumption: no NP in ΔF=2 observables

=> constraints inputs for $B_s \rightarrow \mu \mu (f_{B_s}, V_{tb} V_{ts}^* \dots)$

Different question: Is there NP in b \rightarrow Sll assuming no NP in $\Delta F=2$

P_5 under different scenarios

Results from other analysis

[Arbey, Hurth, Mahmoudi, Martinez Santos, Neshatpour]

Obs: $b \to s\ell\ell (B, B_s) (BR, S_i), R_{K(*)}, b \to s\gamma$ not included yet latest Belle's results on P₅'. FF: light-meson LCSR+lattice

Left-handed hypothesis considered. ... similar 1D and 2D results

Confirm our hierarchy of 1D scenarios

[Alok, Dighe, Gangal, Kumar]

 $\chi^2_{\rm min}$ Pull_{SM} b.f. value 99.2 δC_9 -1.01 ± 0.20 4.2σ δC_9^{μ} 5.3σ -0.93 ± 0.17 89.4 δC_9^e 3.2σ 0.78 ± 0.26 106.6 δC_{10} 0.25 ± 0.23 115.7 1.1σ δC_{10}^{μ} 0.53 ± 0.17 105.8 3.3σ δC_{10}^e -0.73 ± 0.23 105.2 3.4σ $\delta C^{\mu}_{\rm LL}$ -0.41 ± 0.10 96.6 4.5σ δC^e_{LL} 0.40 ± 0.13 3.3σ 105.8

All observables ($\chi^2_{\rm SM} = 117.03$)

 $\delta \mathcal{C}_{LL}^{\ell} = \delta \mathcal{C}_{9}^{\ell} = -\delta \mathcal{C}_{10}^{\ell}$

122 **Obs**: $BR(b \rightarrow s\ell\ell)$ (B, B_s) , $P'_5 R_{K(*)}$ FF: light-meson LCSR+lattice Flavio based analysis: slight decrease of SM pull for $(C_{9\mu}, C_{10\mu})$, at the same level as $(C_{9\mu}, C_{9'\mu})$ and $(C_{9\mu}, C_{10'\mu})$...very similar results to ours [Ciuchini et al.]

Only large-recoil obs. considered, but latest Belle results on P_5 ' incl. Flavio based analysis for FF. Bayesian approach. OK: RHC and not C_{10} .

Linking charge and neutral anomalies and LFU NP

LFUV for charged anomalies $b \rightarrow c \tau v$

SM Semi-tauonic B decays are charged current processes that can probe also New Physics. Experimentally (in analogy to R_{K,K^*}) a LFUV ratio:

$$R_{D^{(*)}} = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

The ratio:

- differs in lepton mass: τ versus $\ell = \mu, e$ mass.
- cancels: form factors, V_{cb} , experimental systematics

R(D) and $R(D^*)$ combination

[From Julian Garcia Pardiñas, UZH]

New world average for R(D) and R(D*) at 3.1 σ from the SM

Linking charged and neutral anomalies (step 1)

Let's move to SMEFT ($\Lambda_{NP} >> m_{t,W,Z}$)

[Grzadkowski, Iskrzynski, Misiak, Rosiek; Alonso, Grinstein, Camalich]

• **NP contribution to** : $[\bar{\mathbf{c}}\gamma^{\mu}\mathbf{P}_{\mathbf{L}}\mathbf{b}][\bar{\tau}\gamma_{\mu}\mathbf{P}_{\mathbf{L}}\nu_{\tau}] \longrightarrow R_{J/\psi}/R_{J/\psi}^{\mathrm{SM}} = R_D/R_D^{\mathrm{SM}} = R_{D^*}/R_{D^*}^{\mathrm{SM}}$

 G_F rescaling

BUT who order that

(at high energy)? Only Two SU(2)_L invariant operators in SMEFT @ 1st order

Linking anomalies with LFU NP (step 2)

Some Solutions to the anomalies

Solution to anomalies, generation of couplings

Colourless vector $SU(2)_L$ triplets (W', B') or U(1)' singlet

 $G \equiv SU(3)_c \times SU(2)_L \times U(1)_Y \times G_E$

Generating Quark FV Coupling:

Vector-like quarks: SM-VL couplings

b_L ϕ Q Z' s_L ϕ^*

Loop induced: SM FCNC, Z' penguins

 $G_E \equiv SU(2)_L$ could pot. explain anomalies $(R_K > 0.9$ & conflict with LHC searches)

- $\bar{b}sZ'$ Quark FVC
- $Z'\ell\ell$ LFUV coupling

Generating Couplings to Leptons:

- Gauged $U(1)_{\mu-\tau}$ symmetry
- Loop induced with vector-like fermions

Solution to anomalies: leptoquarks

- Spin 1 (vector) $SU(2)_L \underline{\text{singlet}}$ or $\underline{\text{triplet}}$ leptoquarks
- Spin 0 (scalar) $SU(2)_L$ singlet or triplet leptoquarks
- via loop....

They mainly point in all versions to $C_9 = -C_{10}$ (left-handed structure like in the SM)

Important constraints:

- $b \rightarrow s \nu \bar{\nu}$ (two scalars LQ can do the job)
- direct bounds (from 0.5-1 TeV)

Colour triplet
Scalar LQ:

$$S_1 \sim (3, 1, 1/3)$$

 $S_3 \sim (3, 3, 1/3)$
Vector LQ:
 $U_1'' \sim (3, 1, 2/3)$
 $U_3'' \sim (3, 3, 2/3)$

Solution to anomalies: leptoquarks

- Spin 1 (vector) $SU(2)_L \underline{\text{singlet}}$ or triplet leptoquarks
- Spin 0 (scalar) $SU(2)_L$ singlet or triplet leptoquarks
- via loop....

They mainly point in all versions to $C_9 = -C_{10}$ (left-handed structure like in the SM)

Important constraints:

- $b \rightarrow s \nu \bar{\nu}$ (two scalars LQ can do the job)
- direct bounds (from 0.5-1 TeV)

Colour triplet
Scalar LQ:

$$S_1 \sim (\overline{3}, 1, 1/3)$$

 $S_3 \sim (\overline{3}, 3, 1/3)$
Vector LQ:
 $N_1^{\mu} \sim (3, 1, 2/3)$
 $U_3^{\mu} \sim (3, 3, 2/3)$
 $b \qquad \nu$
 $i \phi$
 $j \phi$

A very promising candidate is:

Vector leptoquark SU(2) singlet: $U_1(3,1,2/3)$ Coupled mainly to 3rd generation

1. It can explain both charged and neutral anomalies2. $C_9=-C_{10}$ pattern in $b \rightarrow s \mu \mu$ 3. No tree level effect for $b \rightarrow s v v$ 4. No conflict with direct searches

Good solution, but challenging UV completion

Possible UV completions

- SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions
 L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450
- SU(4)×U(2)_L×SU(2)_R + vector-like fermions
 L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4) × SU(4) × SU(4)

M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368

- SU(4) ×U(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos
 J. Heeck, D. Teresi, arXiv:1808.07492
- SU(8) might even explain ε'/ε

S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312

SU(4)×U(2)×SU(2)_R in RS background
 M. Blanke, AC, arXiv:1801.07256

Good solution, but challenging UV completion

Pati-Salam LQ model

Original PS=SU(4) x SU(2)_L x SU(2)_R

It does not work: tight bounds from couplings to light generation: $K_L \rightarrow \mu e$ and $K \rightarrow \pi \mu e$

... too heavy (Flavour-Blind) to work.

[M. Bordone et al.]

A recent proposal : $PS^3 \equiv PS_1 \times PS_2 \times PS_3$

 $PS_i = SU(4)_i \times [SU(2)_L]_i \times [SU(2)_R]_i$

1. SSB decouple very heavy fields coupled to 1st & 2nd gen.

2. TeV-scale LQ associated to 3^{rd} gen and LQ coupling to RH SM

3. Higgs of EWSB only on third generation site:

... yukawa hierarchies from hierarchy of breaking vevs

Near Future next test: $Q_5 = P'_{5\mu} - P'_{5e}$

What can we learn?

Q₅ can disentangle relevant scenarios?

 R_K (if no-RHC are included) cannot distinguish among relevant scenarios.

[Alguerò, Capdevila, SDG, Masjuan, JM: 1902.04900]

of $\mathbf{R}_{\mathbf{K}}$ are still too packed within 0.5 σ to disentangle the correct pattern.

Q_5 can disentangle relevant scenarios?

Only Belle has been able to measure Q_5 up to now: $Q_5[1,6]^{Belle} = 0.656 \pm 0.496$

[S. Wehle et al. PRL118 (2017)]

Table 2: Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

-		
q^2 in GeV ² / c^2	Q_4	Q5
[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

Q_5 can disentangle relevant scenarios?

All scenarios with C_{9}^{v} are packed as well as those with $C_{9}^{v} = -C_{10}^{v}$ BUT in two different sets. Also: * Q_5 positive and large would favour scenarios with $C_{9\mu} < -1$ * $Q_5 < 0$ or small would favour scenarios with $C_{9\mu=-}C_{10\mu}$

Conclusions

• After the updates of R_K (LHCb), R_{K^*} (Belle) and $B_s \rightarrow \mu \mu$ we find:

- **no dramatic changes** in the hierarchy of 1D hypothesis: C_9 and C_9 =- C_9 ' preferred with All fit [178 obs] significance 5.8 (5.7) σ C_9 =- C_{10} preferred with LFUV fit [20 obs] significance 4.0 σ

- 2D **new emerging scenarios including RHC** with C₉'>0 & C₁₀'<0: $(C_{9\mu}, C'_{9\mu} = -C'_{10\mu})$ (6.1 σ)
- LFU-NP structure is **quite dependent** on LFUV-NP structure: $A C_9^{V=-}C_{10}^{V}$ struct. provides a good description only in presence of C_9^{U}
- We have found a link of charged & neutral anomalies & LFU NP in scn 8.
- While R_K cannot disentangle scenarios, **a measurement of Q_5** such that:

-Q₅ **positive and large** would **favour** scenarios with $C_{9\mu}$ <-1 -Q₅ < 0 or small would **favour** scenarios with $C_{9\mu=-}C_{10\mu}$

.... new data on Q_5 , R_{ϕ} , updated optimized observables is essential. Belle II inputs are also crucial. BACK-UP

... in summary

[Courtesy of A. Crivellin]

Pati-Salam LQ can explain the flavour anomalies

Different theory approaches to **estimate/predict** "LD charm":

Long distance non-factorizable : LCSR by Khodjamirian

+ s_i const/destr interference.

Empirical model to determine the impact of resonances :

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

In all theoretical estimates the anomaly remains.

Different theory approaches to **estimate/predict** "LD charm":

Long distance non-factorizable : LCSR by Khodjamirian

+ s_i const/destr interference.

Empirical model to determine the impact of resonances :

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity: (fixes q² dep. up to pol. & systematic) Bobeth et al.'18

In all theoretical estimates the anomaly remains.

Different theory approaches to **estimate/predict** "LD charm":

LOSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances :

> (amp. analysis+BW) Blake et al. '17

LD effects from analyticity: (fixes q² dep. up to pol. & systematic) Bobeth et al.'18

In all theoretical estimates the anomaly remains.

