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Questions for Future Colliders 

•  What is the “value added” ? 

•  What are the synergies/complementarities 
involving the pp, ee, and ep colliders ? 

•  Are there well-defined targets in mass reach 
and precision that would definitively address 
key open questions ? 



The Origin of Matter 

What can the LHC & future colliders teach us 
about open questions in cosmology ? 

Cosmic Energy Budget 

Dark Matter 

Dark Energy 
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Baryons Baryons 
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Themes for This Talk 

•  The future collider program provides an opportunity 
to perform a comprehensive probe of the thermal 
history of EW symmetry breaking in BSM scenarios 

•  Many interesting aspects of dark matter/dark sector 
physics can be studied with future colliders ! a 
comprehensive picture remains to be developed 
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Disclaimer & Credits 

•  Disclaimer: I am attempting to combine two topics 
into one longer talk ! my apologies to anyone for 
omission of work that should be mentioned in a full 
one hour talk on either topic 

•  Credits: Many thanks to input I’ve received from 
week 1 speakers, Tim Tait who unfortunately had to 
cancel his visit, and my many collaborators 
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Outline – Part A: EW Phase Transition 

I.  Context & Questions 

II.  Models & Phenomenology 

•  MSSM 

•  Simplified Higgs Portal 

III.  Theoretical Robustness 

IV.  Outlook 
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Outline – Part B: DM 

I.  Context  

II.  MSSM 

III.  Simplified Models 

IV.  EW Multiplets 

V.  QCD-Like DM 

VI.  Mediators 

VII. Outlook 
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A-I. Context & Questions 



Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

10 
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Thermal History of Symmetry Breaking 

QCD Phase Diagram ! EW Theory Analog?  



EWSB: The Scalar Potential  
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From Nature 

What was the thermal history of EWSB ? 



EWSB: The Scalar Potential  

13 

From Nature 

What was the thermal history of EWSB ? 
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EW Phase Transition: St’d Model  
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SM EW: Cross over transition 

EW Phase Diagram 

How does this picture change 
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Patterns of Symmetry Breaking 
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S. Weinberg, PRD 9 (1974) 3357 



Patterns of Symmetry Breaking 
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4

Extrema can evolve differently as T evolves ! 
rich possibilities for symmetry breaking 
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Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

•  Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ? 
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Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

•  Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ? 

•  Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ? 

28 



Gravitational Radiation 
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1.  Bubbles nucleate and grow 
2.  Expand in a plasma - create reaction 

fronts 
3.  Bubbles + fronts collide - violent process 
4.  Sound waves left behind in plasma 
5.  Turbulence; damping 

Thanks: D. Weir 



Gravitational Radiation 
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Thanks: D. Weir 
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A-II. Models & Phenomenology 
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Models & Phenomenology 

Thanks: J. M. No 



EWPT: Theory & Phenomenology 

•  What models can lead to a (strong) first order 
electroweak phase transition (EW baryogenesis 
& gravitational waves) ? 

•  Can they also yield contributions to ΩDM ? 

•  How can they be tested experimentally ? 

•  How reliably can we compute phase transition 
properties & make the connection with 
phenomenology ? 
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First Order EWPT from BSM Physics 

•  Thermal loops involving new bosons 

•  T=0 loops (CW Potential)  

•  Change tree-level vacuum structure 
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Why TEW Sets a Scale for Colliders  

•  Thermal loops involving new bosons 

•  T=0 loops (CW Potential)  

•  Change tree-level vacuum structure 

35 
Blackboard Discussion 



EWPT “Poster Child”: MSSM 
Light Stop Scenario 

Light Stop 
Scenario 

Thermal loops 
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EW Phase Transition: SUSY 
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Increasing mh  

New scalars  

Light RH stops also affect 
Higgs properties 

Katz, Perelstein, R-M, 
Winslow 1509.02934 

MSSM + δλ4 (Hu
† Hu )2   

Curtin, Jaiswal, Meade 1203.2932  
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Strong 1st Order EWPT 

Light Stop 
Scenario 

Beyond the MSSM: 
singlets, 2-step…. 

Definitive probe of the possibilities ! 
LHC + next generation colliders  
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Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 
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Higgs Portal: Simple Scalar Extensions 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 
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This talk 

This talk 



Higgs Portal: Simple Scalar Extensions 
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Simplest Extension 

Standard Model + real singlet scalar 

Thanks: J. M. No 
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Simplest Extension 

Standard Model + real singlet scalar 

•  Strong first order EWPT 

•  Two mixed singlet-doublet states 



EW Phase Transition: New Scalars 
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Simplest Extension: 
two states h1 & h2 

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010 
Espinosa, Konstandin, Riva NPB 854 (2012) 592 

<S > 

Real Singlet: φ ! S 
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 m2 > 2 m1 
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EW Phase Transition: Singlet Scalars 
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SM EW: Cross over transition 

EW Phase Diagram 

How does this picture 
change in presence of new 
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the phase diagram ? 
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EW Phase Transition: Singlet Scalars 
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 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

47 
Profumo, MJRM, Shaugnessy ‘07 

Simplest Extension: two 
states h1 & h2 – h,S mixtures 

Real Singlet: φ ! S 

Increasing mh  

New scalars  



EW Phase Transition: Singlet Scalars 
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Profumo, MJRM, Shaugnessy ‘07 

Collider probes 

•  Resonant di-Higgs production 

•  Precision Higgs measurements 

•  Non-resonant di-Higgs & exotic 
Higgs decays 



EW Phase Transition: New Scalars 
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Resonant di-Higgs production 

No & RM, arXiv:1310.6035 : LHC Discovery w/ 100 fb-1 
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EW Phase Transition: Singlet Scalars 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    

 h-S Mixing  
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Next gen pp 
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 EWPO 

See also: Huang et al, 1701.04442; 
Li et al, 1906.05289  
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EW Phase Transition: Singlet Scalars 
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F1st order 2nd order 

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018 
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EW Phase Transition: Singlet Scalars 
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Thanks: M. Cepeda 



EW Phase Transition: Singlet Scalars 
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EW Phase Transition: New Scalars 
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Mixed States: 
Precision $ 
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Modified Higgs Self-Coupling 

Thanks: J. M. No, M. Cepeda 

Hadron 
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EW Phase Transition: Singlet Scalars 
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F1st order 2nd order 

Chen, Kozaczuk, Lewis 2017 
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 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

Singlet-like pair production (off shell) 
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Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 

 Real singlet:     Z2 

 Real singlet:     Z2 

 Complex Singlet 
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The Simplest Extension 
Model 

Independent Parameters: 

   v0, x0, λ0, a1, a2, b3, b4 

H-S Mixing
H1 ! H2H2

€ 
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2 2 2

2 2 2
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⎝ 
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Mass matrix 
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⎟ =

sin cos
cos −sin
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⎝ 
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⎞ 

⎠ 
⎟ 
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

Stable S (dark matter?) 
•  Tree-level Z2 symmetry: a1=b3=0 to  

 prevent s-h mixing and one-loop s    hh    

•  x0 =0 to prevent h-s mixing xSM EWPT:  ✖ 

Signal Reduction Factor 

Production Decay 

DM Scenario 

ΩDM & σSI 

+ +… 



EW Phase Transition: Two-Step 
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F
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F1st order 2nd order 

<S > 

Profumo, R-M, Shaugnessy 2007 
Epsinosa, Konstandin, Riva 2011 
Curtain, Meade, Yu: arXiv: 1409.0005 
Jiang, Bian, Huang, Shu 1502.07574 
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EW Phase Transition: Singlet Scalars 
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φ
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F
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F1st order 2nd order 

<S > 

Curtain, Meade, Yu: arXiv: 1409.0005 

Z2 symmetric real singlet extension 

•  Loop-induced 1-step transition 
•  2-step transition for µS

2 < 0  

60 * Singlet two step: see also Profumo, R-M, Shaugnessy 2007, 
Epsinosa, Konstandin, Riva 2011 
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Non-pert 



EW Phase Transition: Singlet Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

<S > 

Curtain, Meade, Yu: arXiv: 1409.0005 

Z2 symmetric real singlet extension 

•  Loop-induced 1-step transition 
•  2-step transition for µS

2 < 0  

VBF @ 100 TeV pp: 

 pp !  h jj , h ! invis 

2 Step* 

1 Step 

Significance 
w/ 3000 fb-1 

Non-pert 
61 * Singlet two step: see also Profumo, R-M, Shaugnessy 2007, 

Epsinosa, Konstandin, Riva 2011 



EW Phase Transition: DM Direct Detection 
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<S > 

Curtain, Meade, Yu: arXiv: 1409.0005 

Z2 symmetric real singlet extension 

•  Loop-induced 1-step transition 
•  2-step transition for µS

2 < 0  

Scalar singlet DM: direct detection 

LUX Exclusion 

Xenon1T 
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Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 

 Real singlet:     Z2 

 Real singlet:     Z2 

 Complex Singlet 
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Real Triplet 

Σ0 , Σ+, Σ- ~ ( 1, 3, 0 ) 

EWPT: a1,2 = 0  & <Σ0> = 0 

DM & EWPT: a1 = 0  & <Σ0> = 0 

/ / 

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 
055024 (2009); 0811.3957 [hep-ph] 



Real Triplet 

Σ0 , Σ+, Σ- ~ ( 1, 3, 0 ) 

EWPT: a1,2 = 0  & <Σ0> = 0 

DM & EWPT: a1 = 0  & <Σ0> = 0 

/ / 

DM Stability 

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 
055024 (2009); 0811.3957 [hep-ph] 
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Increasing mh  

New scalars  
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<Σ0 > 1 
2 

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)
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EWPT & Perturbation Theory 

Expansion parameter 

SM lattice studies: geff ~ 0.8 in vicinity of 
EWPT for mH ~ 70 GeV  

m⇤ = 8⇡ ⇤ (1.66g⇤)
v
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FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +

ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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+
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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ḡ2
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, y =
µ̄

2
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ḡ4
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. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†
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sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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2
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+
b̄4,3

4
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
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, y =
µ̄

2
�,3

ḡ4
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. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist 
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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ḡ2
3

, y =
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2
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. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)

L (3)
temporal = 1

2 (DrA
a

0)2 + 1
2m

2
D

A
a

0A
a

0 + 1
2 (@rB0)2

+ 1
2m

02
D

B
2
0 + 1

2 (@rC0)2 + 1
2m

002
D

C
2
0

+ 1
43(Aa

0A
a

0)2 + 1
4

0
3B

4
0 + 1

4
00
3A

a

0A
a

0B
2
0

+ h3�
†
�A

a

0A
a

0 + h
0
3�

†
�B

2
0 + h

00
3B0�

† ~A0 · ~⌧�

+ !3�
†
�C

2
0 + �3(⌃a⌃a)(Ab

0A
b

0) + �
0
3(⌃

a
A

a

0)(⌃b
A

b

0).(2)

The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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, y =
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2
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist 
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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, y =
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

•  Assume BSM fields are 
“heavy” or “supeheavy” : 
integrate out 

•  Effective “SM-like” theory 
parameters are functions of 
BSM parameters 

•  Use existing lattice 
computations for SM-like 
effective theory & matching 
onto full theory to determine 
FOEWPT-viable parameter 
space regions 

Lattice simulations exist (e.g., Kajantie et al ‘95) 
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)

L (3)
temporal = 1

2 (DrA
a

0)2 + 1
2m

2
D

A
a

0A
a

0 + 1
2 (@rB0)2

+ 1
2m

02
D

B
2
0 + 1

2 (@rC0)2 + 1
2m

002
D

C
2
0

+ 1
43(Aa

0A
a

0)2 + 1
4

0
3B

4
0 + 1

4
00
3A

a

0A
a

0B
2
0

+ h3�
†
�A

a

0A
a

0 + h
0
3�

†
�B

2
0 + h

00
3B0�

† ~A0 · ~⌧�

+ !3�
†
�C

2
0 + �3(⌃a⌃a)(Ab

0A
b

0) + �
0
3(⌃

a
A

a

0)(⌃b
A

b

0).(2)

The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).
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pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <
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by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
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As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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gauge + L (3)
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temporal + �L (3)
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄
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⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
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form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.
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B. Three-dimensional e↵ective theories
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

•  Assume BSM fields are 
“heavy” or “supeheavy” : 
integrate out 

•  Effective “SM-like” theory 
parameters are functions of 
BSM parameters 

•  Use existing lattice 
computations for SM-like 
effective theory & matching 
onto full theory to determine 
FOEWPT-viable parameter 
space regions 

Lattice simulations exist (e.g., Kajantie et al ’95) 



87 

Real Triplet & EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 
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Real Triplet & EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 
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Real Triplet & EWPT 
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Real Triplet & EWPT 
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Real Triplet Example: Lessons 

•  Initial non-perturbative studies using 3d EFT 
reveals regions of FOEWPT & crossover 
transition not evident in PT 

•  Next generation circular e+e- and pp colliders 
likely necessary to access these region: a first 
order transition ! Observable shift in h! γγ rate  

•  Next generation colliders will have needed 
sensitivity 



? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

New scalars  

EW Multiplets: Two-Step EWPT 

j

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195  

<Σ0 > 

Tr
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s 

Higgs Portal Coupling 

Two-step EWB 
favorable 
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One step 

Two step 
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Real Triplet & EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 

Crossover 

FOEWPT 

•  One-step 
•  Non-perturbative 

•  Two-step region 
•  Pert studies to date 
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In progress: new 
lattice simulations 



Scalar Singlets & EWPT: Collider Reach 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    

 h-S Mixing  

m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (40)

�(NR ! `H) 6= �(NR !
¯̀H⇤) (41)

m⌫ =
m

2
D

MR

(42)

hp
0
| J

EM
µ

|pi = Ū(p0)


F1�µ +

iF2

2M
�µ⌫q

⌫ +
iF3

2M
�µ⌫�5q

⌫ +
FA

M2
(q2

�µ � 6qqµ)�5

�
U(p) (43)

hp
0
| J

EM
µ

|pi
PV

=
FA

M2
Ū(p0)

⇥
(q2

�µ � 6qqµ)�5

⇤
U(p) (44)

Qquqd = ✏jkQ̄
j
uRQ̄

k
dR (45)

YB =
nB

s
= (8.82± 0.23)⇥ 10�11 (46)

mt̃R
⇠ 160 GeV (47)

bb̄�� & 4⌧ (48)

4

Next gen pp 

LHC 

 EWPO 

See also: Huang et al, 1701.04442 

Perturbative EWPT analysis 



95 

Real Singlet & EWPT: Lattice “Repurpose” 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

•  Two-step region 
•  Pert studies to date FOEWPT 

Crossover 
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Heavy Real Singlet & EWPT: Probes 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

Crossover 
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Heavy Real Singlet:  EWPT & GW 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

 Latent heat 
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LISA SNR 

Non-dynamical heavy BSM scalars 
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Heavy Real Singlet:  EWPT & GW 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

 Latent heat 

 “D
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LISA SNR Dynamical BSM 
scalars 
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A-IV. EWPT Outlook 
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Questions for Future Colliders 

•  What is the “value added” ? 

•  What are the synergies/complementarities 
involving the pp, ee, and ep colliders ? 

•  Are there well-defined targets in mass reach 
and precision that would definitively address 
key open questions ? 



EWPT 
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•  Value added 

 
 

•  Synergy/complementarity 
 

 

•  Well-defined target in mass 
and/or precision 

Extend reach significantly 
beyond HL-LHC 

Look for correspondence between new 
states (hh mode) and modified Higgs 
couplings (ee & hh modes) 

Singlets: 100 TeV + 30 ab-1 

EW Multiplets: < 10% on hγγ 




