Future Colliders and the Cosmic Frontier Part A: EWPT

M.J. Ramsey-Musolf U Mass Amherst / TDLI-SJTU

My pronouns: he/him/his

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst Tsung-Dao Lee Institute 上海交通大学 Shanghai Jiao Tong University

http://www.physics.umass.edu/acfi/

http://tdli.sjtu.edu.cn/web/yjxy/5130001.htm

Future Colliders Workshop IFT Madrid, June-July 2019

Feliz Fiesta del Orgullo

Cincuenta anos Stonewall

Questions for Future Colliders

- What is the "value added" ?
- What are the synergies/complementarities involving the pp, ee, and ep colliders ?
- Are there well-defined targets in mass reach and precision that would definitively address key open questions ?

The Origin of Matter

What can the LHC & future colliders teach us about open questions in cosmology ?

Themes for This Talk

- The future collider program provides an opportunity to perform a comprehensive probe of the thermal history of EW symmetry breaking in BSM scenarios
- Many interesting aspects of dark matter/dark sector physics can be studied with future colliders → a comprehensive picture remains to be developed

Disclaimer & Credits

- Disclaimer: I am attempting to combine two topics into one longer talk → my apologies to anyone for omission of work that should be mentioned in a full one hour talk on either topic
- Credits: Many thanks to input I've received from week 1 speakers, Tim Tait who unfortunately had to cancel his visit, and my many collaborators

Outline – Part A: EW Phase Transition

- I. Context & Questions
- II. Models & Phenomenology
 - MSSM
 - Simplified Higgs Portal
- III. Theoretical Robustness
- IV. Outlook

Outline – Part B: DM

- I. Context
- II. MSSM
- III. Simplified Models
- IV. EW Multiplets
- V. QCD-Like DM
- VI. Mediators
- VII. Outlook

A-I. Context & Questions

Electroweak Phase Transition

 Higgs discovery → What was the thermal history of EWSB ?

Thermal History of Symmetry Breaking

QCD Phase Diagram → EW Theory Analog?

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EW Phase Transition: St'd Model

Increasing m_h

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

EW Phase Diagram

SM EW: Cross over transition

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ? SFOEWPT ?

Patterns of Symmetry Breaking

S. Weinberg, PRD 9 (1974) 3357

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?

Baryogenesis Scenarios

21

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Gravitational Radiation

Thanks: D. Weir

- 1. Bubbles nucleate and grow
- 2. Expand in a plasma create reaction fronts
- 3. Bubbles + fronts collide violent process
- 4. Sound waves left behind in plasma
- 5. Turbulence; damping

Gravitational Radiation

Thanks: D. Weir

A-II. Models & Phenomenology

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Doublet (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Triplet	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18
MSSM	Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

EWPT: Theory & Phenomenology

- What models can lead to a (strong) first order electroweak phase transition (EW baryogenesis & gravitational waves) ?
- Can they also yield contributions to Ω_{DM} ?
- How can they be tested experimentally ?
- How reliably can we compute phase transition properties & make the connection with phenomenology ?

First Order EWPT from BSM Physics

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

Why T_{EW} Sets a Scale for Colliders

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

EWPT "Poster Child": MSSM Light Stop Scenario

Thermal loops
EW Phase Transition: SUSY

$MSSM + \delta\lambda_4 (H_u^{\dagger} H_u)^2$

Katz, Perelstein, R-M, Winslow 1509.02934

Strong 1st Order EWPT

Definitive probe of the possibilities \rightarrow LHC + next generation colliders

Extension	DOF	EWPT	DM
Real singlet: 🔀	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

	Extension	DOF	EWPT	DM
This talk	Real singlet: X_{g}	1	~	*
	Real singlet: Z ₂	1	~	~
	Complex Singlet	2	~	~
This talk	EW Multiplets	3+	~	~

Extension	DOF	EWPT	DM
Real singlet: X_{g}	1	 ✓ 	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

Simplest Extension

Standard Model + real singlet scalar

Thanks: J. M. No

Simplest Extension

Standard Model + real singlet scalar

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

- Strong first order EWPT
- Two mixed singlet-doublet states

EW Phase Transition: New Scalars

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

EW Phase Transition: New Scalars

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

EW Phase Transition: New Scalars

Modified Higgs Self-Coupling

 $0.25 \quad 0.50$

 $0.75 \ 1.00 \ 1.25 \ 1.50 \ 1.75$

 $g_{111}/g_{111}^{\rm SM}$

50

0

0

EW Phase Transition: New Scalars

Thanks: J. M. No, M. Cepeda

Singlet-like pair production (off shell)

Chen, Kozaczuk, Lewis 2017

Extension	DOF	EWPT	DM
Real singlet: X_{x}	1	~	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

The Simplest Extension

DM Scenario

EW Phase Transition: Two-Step

Profumo, R-M, Shaugnessy 2007 Epsinosa, Konstandin, Riva 2011 Curtain, Meade, Yu: arXiv: 1409.0005 Jiang, Bian, Huang, Shu 1502.07574

Curtain, Meade, Yu: arXiv: 1409.0005

*Z*₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{\rm S}^2 < 0$

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007, Epsinosa, Konstandin, Riva 2011

Curtain, Meade, Yu: arXiv: 1409.0005

Z₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{s}^{2} < 0$

VBF @ 100 TeV pp:

 $pp
ightarrow h \, jj$, h
ightarrow invis

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007, Epsinosa, Konstandin, Riva 2011

61

EW Phase Transition: DM Direct Detection

Curtain, Meade, Yu: arXiv: 1409.0005

Z₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{\rm S}^2 < 0$

Scalar singlet DM: direct detection

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

Real Triplet

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = \frac{a_1}{2} H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \& <\Sigma^0 > \neq 0$

DM & *EWPT*: *a*¹ = 0 & <Σ⁰> = 0

Real Triplet

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = + \frac{a_2}{2} H^{\dagger} H \operatorname{Tr} \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \& <\Sigma^0 > \neq 0$ *DM & EWPT:* $a_1 = 0 \& <\Sigma^0 > = 0$

DM Stability

EW Multiplets: EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

EW Multiplets: EWPT

 $\downarrow F$

T>T_

T=T,

T<T.

 $< \Sigma^0 >$

- Thermal loops
- Tree-level barrier

EW Multiplets: One-Step EWPT

F

T>T.

T=T,

T<T.

 $<\Sigma^0>$

• One-step: Sym phase → Higgs phase

- One-step: Sym phase → Higgs phase
- Two-step: successive EW broken
 phases

- One-step: Sym phase → Higgs phase
- Two-step: successive EW broken
 phases

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

 $\leq \phi^0 >$

Η

 ϕ dark matter

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195
EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Thanks: M. Cepeda

EW Multiplets: 2HDM

Thanks: J. M. No

See S. Huber Talk

74

A-III. Theoretical Robustness

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter space not viable
- **B.** Perturbative
 - Most feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter B. Perturbative mark pert the
- - ARG feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: $g_{eff} \sim 0.8$ in vicinity of EWPT for $m_H \sim 70$ GeV

EW Multiplets: One-Step EWPT ?

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

Lattice simulations exist

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

Real Triplet Example: Lessons

- Initial non-perturbative studies using 3d EFT reveals regions of FOEWPT & crossover transition not evident in PT
- Next generation circular e+e- and pp colliders likely necessary to access these region: a first order transition \rightarrow Observable shift in h $\rightarrow \gamma\gamma$ rate
- Next generation colliders will have needed sensitivity

EW Multiplets: Two-Step EWPT

Scalar Singlets & EWPT: Collider Reach

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

Real Singlet & EWPT: Lattice "Repurpose"

95

Heavy Real Singlet & EWPT: Probes

- One-step
- Non-perturbative

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative

A-IV. EWPT Outlook

Questions for Future Colliders

- What is the "value added" ?
- What are the synergies/complementarities involving the pp, ee, and ep colliders ?
- Are there well-defined targets in mass reach and precision that would definitively address key open questions ?

EWPT

• Value added

Extend reach significantly beyond HL-LHC

• Synergy/complementarity

Look for correspondence between new states (hh mode) and modified Higgs couplings (ee & hh modes)

• Well-defined target in mass and/or precision

Singlets: 100 TeV + 30 ab⁻¹ EW Multiplets: < 10% on hγγ

