Future Colliders and the Cosmic Frontier Part A: EWPT

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

http://tdli.sjtu.edu.cn/web/yjxy/5130001.htm

[^0]
Feliz Fiesta del Orgullo

Cincuenta anos Stonewall

Questions for Future Colliders

- What is the "value added"?
- What are the synergies/complementarities involving the pp, ee, and ep colliders ?
- Are there well-defined targets in mass reach and precision that would definitively address key open questions?

The Origin of Matter

Cosmic Energy Budget

What can the LHC \& future colliders teach us about open questions in cosmology?

Themes for This Talk

- The future collider program provides an opportunity to perform a comprehensive probe of the thermal history of EW symmetry breaking in BSM scenarios
- Many interesting aspects of dark matter/dark sector physics can be studied with future colliders \rightarrow a comprehensive picture remains to be developed

Disclaimer \& Credits

- Disclaimer: I am attempting to combine two topics into one longer talk \rightarrow my apologies to anyone for omission of work that should be mentioned in a full one hour talk on either topic
- Credits: Many thanks to input l've received from week 1 speakers, Tim Tait who unfortunately had to cancel his visit, and my many collaborators

Outline - Part A: EW Phase Transition

I. Context \& Questions
II. Models \& Phenomenology

- MSSM
- Simplified Higgs Portal
III. Theoretical Robustness
IV. Outlook

Outline - Part B: DM

I. Context
II. MSSM
III. Simplified Models
IV. EW Multiplets
V. QCD-Like DM
VI. Mediators
VII. Outlook

A-I. Context \& Questions

Electroweak Phase Transition

- Higgs discovery \rightarrow What was the thermal history of EWSB ?

Thermal History of Symmetry Breaking

QCD Phase Diagram \rightarrow EW Theory Analog?

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EW Phase Transition: St'd Model

EW Phase Transition: St'd Model

Increasing m_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Transition: St'd Model

Increasing m_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

Patterns of Symmetry Breaking

S. Weinberg, PRD 9 (1974) 3357

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves \rightarrow rich possibilities for symmetry breaking

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves \rightarrow rich possibilities for symmetry breaking

Electroweak Phase Transition

- Higgs discovery \rightarrow What was the thermal history of EWSB ?
- Baryogenesis \rightarrow Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?

Baryogenesis Scenarios

Baryogenesis Scenarios

Era of EWSB: $t_{\text {univ }} \sim 10 \mathrm{ps}$

EW Phase Transition: Baryogenesis

Increasing m_{h}

EWSB

Baryogenesis Gravity Waves Scalar DM LHC Searches

EW Phase Transition: Baryogenesis

Increasing m_{h}

EW Phase Transition: Baryogenesis

Increasing m_{h}

Baryogenesis Gravity Waves Scalar DM LHC Searches

EW Phase Transition: Baryogenesis

Increasing m_{h}

Bubble nucleation

EW Phase Transition: Baryogenesis

Increasing m_{h}

Quench

Y_{B} : diffuses EWSB into interiors

Electroweak Phase Transition

- Higgs discovery \rightarrow What was the thermal history of EWSB ?
- Baryogenesis \rightarrow Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves \rightarrow If a signal observed in LISA, could a cosmological phase transition be responsible ?

Gravitational Radiation

1. Bubbles nucleate and grow
2. Expand in a plasma - create reaction fronts
3. Bubbles + fronts collide - violent process
4. Sound waves left behind in plasma
5. Turbulence; damping
[^1]
Gravitational Radiation

Thanks: D. Weir

A-II. Models \& Phenomenology

Models \& Phenomenology

What BSM Scenarios?

$S M+$ scalar singlet
$S M+$ Scalar Doublet
$(2 H D M)$

SM + Scalar Triplet

MSSM

NMSSM..

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15 Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19...

Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06 Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18...

Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18 ...
Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14...

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04 Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15...

EWPT: Theory \& Phenomenology

- What models can lead to a (strong) first order electroweak phase transition (EW baryogenesis \& gravitational waves) ?
- Can they also yield contributions to $\Omega_{D M}$?
- How can they be tested experimentally?
- How reliably can we compute phase transition properties \& make the connection with phenomenology?

First Order EWPT from BSM Physics

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

Why $T_{E W}$ Sets a Scale for Colliders

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

EWPT "Poster Child": MSSM Light Stop Scenario

Thermal loops

EW Phase Transition: SUSY

Increasing m_{h}
\longleftarrow New scalars

Light RH stops also affect Higgs properties

Curtin, Jaiswal, Meade 1203.2932
$M S S M+\delta \lambda_{4}\left(H_{u}^{\dagger} H_{u}\right)^{2}$

Katz, Perelstein, R-M,
Winslow 1509.02934

Strong $1^{\text {st }}$ Order EWPT

Definitive probe of the possibilities \rightarrow LHC + next generation colliders

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\nearrow	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

Higgs Portal: Simple Scalar Extensions

May be low-energy remnants of UV complete theory \& illustrative of generic features

Higgs Portal: Simple Scalar Extensions

This talk	Extension	DOF	EWPT	DM
	Real singlet: χ_{8}	1	\checkmark	*
	Real singlet: Z_{2}	1	\checkmark	\checkmark
	Complex Singlet	2	\checkmark	\checkmark
This talk	EW Multiplets	3+	\checkmark	\checkmark

May be low-energy remnants of UV complete theory \& illustrative of generic features

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: Z_{ℓ}	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\checkmark
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

Simplest Extension

Standard Model + real singlet scalar

```
singlet EW Phase Transition
Driven
(lots of) Motivation
\(\Rightarrow\) Neutral Naturalness
\(\Rightarrow\) Higgs Portal (Dark Sectors)
\(\Rightarrow\) Non-minimal SUSY (e.g. NMSSM)
\(\Rightarrow\) Warped Extra Dim (dilaton...)
...
```


Simplest Extension

Standard Model + real singlet scalar

$$
V_{\mathrm{HS}}=\frac{a_{1}}{2}\left(H^{\dagger} H\right) S+\frac{a_{2}}{2}\left(H^{\dagger} H\right) S^{2}
$$

- Strong first order EWPT
- Two mixed singlet-doublet states

EW Phase Transition: New Scalars

Increasing m_{h}

Real Singlet: $\quad \phi \rightarrow S$
Simplest Extension:
two states $h_{1} \& h_{2}$

EW Phase Transition: Singlet Scalars

Increasing \boldsymbol{m}_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Transition: Singlet Scalars

Increasing m_{h}
\longleftarrow New scalars

Real Singlet: $\quad \phi \rightarrow S$
Simplest Extension: two states $h_{1} \& h_{2}-h, S$ mixtures

Profumo, MJRM, Shaugnessy ‘07

EW Phase Transition: Singlet Scalars

Collider probes

- Resonant di-Higgs production
- Precision Higgs measurements
- Non-resonant di-Higgs \& exotic Higgs decays

EW Phase Transition: New Scalars

Increasing m_{h}
Resonant di-Higgs production

No \& RM, arXiv:1310.6035 : LHC Discovery w/ $100 \mathrm{fb}^{-1}$

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs \& precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442;
Li et al, 1906.05289

EW Phase Transition: New Scalars

Modified Higgs Self-Coupling

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

53
Thanks: M. Cepeda

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble \& Perelstein 0711.3018

Thanks: M. Cepeda

EW Phase Transition: New Scalars

Thanks: J. M. No, M. Cepeda

EW Phase Transition: Singlet Scalars

Singlet-like pair production (off shell)

Chen, Kozaczuk, Lewis 2017

Higgs Portal: Simple Scalar Extensions

| Extension | DOF | EWPT | DM |
| :--- | :---: | :---: | :---: | :---: |
| Real singlet: $\mathrm{Z}_{\mathrm{又}}$ | $\mathbf{1}$ | \checkmark | \checkmark |
| Real singlet: Z_{2} | $\mathbf{1}$ | \nearrow | \nearrow |
| Complex Singlet | $\mathbf{2}$ | \nearrow | \nearrow |
| EW Multiplets | $3+$ | \nearrow | \nearrow |

May be low-energy remnants of UV complete theory \& illustrative of generic features

The Simplest Extension

DM Scenario

EW Phase Transition: Two-Step

Profumo, R-M, Shaugnessy 2007
Epsinosa, Konstandin, Riva 2011
Curtain, Meade, Yu: arXiv: 1409.0005
Jiang, Bian, Huang, Shu 1502.07574

EW Phase Transition: Singlet Scalars

Curtain, Meade, Yu: arXiv: 1409.0005
Z_{2} symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{S}{ }^{2}<0$

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007,

EW Phase Transition: Singlet Scalars

Curtain, Meade, Yu: arXiv: 1409.0005
Z_{2} symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{s}{ }^{2}<0$

VBF @ 100 TeV pp:

$$
p p \rightarrow h j j, h \rightarrow \text { invis }
$$

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007,
 Epsinosa, Konstandin, Riva 2011

EW Phase Transition: DM Direct Detection

Curtain, Meade, Yu: arXiv: 1409.0005
Z_{2} symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{S}{ }^{2}<0$

Scalar singlet DM: direct detection

Higgs Portal: Simple Scalar Extensions

Extension	DOF	EWPT	DM
Real singlet: $\mathrm{Z}_{\mathrm{又}}$	$\mathbf{1}$	\checkmark	\checkmark
Real singlet: Z_{2}	$\mathbf{1}$	\checkmark	\nearrow
Complex Singlet	$\mathbf{2}$	\nearrow	\nearrow
EW Multiplets	$3+$	\nearrow	\nearrow

May be low-energy remnants of UV complete theory \& illustrative of generic features

Real Triplet

$$
\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \quad \sim(1,3,0)
$$

$$
V_{H \Sigma}=\frac{a_{1}}{2} H^{\dagger} \Sigma H+\frac{a_{2}}{2} H^{\dagger} H \operatorname{Tr} \Sigma^{2}
$$

EWPT: $a_{1,2} \neq 0 \quad \&<\Sigma^{0}>\neq 0$
DM \& EWPT: $\left.a_{1}=0 \quad \&<\Sigma^{0}\right\rangle=0$

Real Triplet

$$
\sum^{0}, \Sigma^{+}, \Sigma^{-} \sim(1,3,0) \quad \begin{aligned}
& \text { Fileviez-Perez, Patel, Wang, R-M: PRD 79: } \\
& 055024 \text { (2009); 0811.3957 [hep-ph] }
\end{aligned}
$$

$$
V_{H \Sigma}=\quad+\frac{a_{2}}{2} H^{\dagger} H \operatorname{Tr} \Sigma^{2}
$$

$$
\begin{aligned}
& \text { EWPT: } a_{1,2} \neq 0 \quad \&<\Sigma^{0}>\neq 0 \\
& \text { DM \& EWPT: } a_{1}=0 \quad \&<\Sigma^{0}>=0
\end{aligned}
$$

DM Stability

EW Multiplets: EWPT

\longleftarrow New scalars

EW Multiplets: EWPT

\longleftarrow New scalars

- Thermal loops
- Tree-level barrier

EW Multiplets: One-Step EWPT

Increasing m_{h}

\longleftarrow New scalars

- One-step: Sym phase \rightarrow Higgs phase

EW Multiplets: Two-Step EWPT

Increasing m_{h}

\longleftarrow New scalars

- One-step: Sym phase \rightarrow Higgs phase
- Two-step: successive EW broken phases

EW Multiplets: Two-Step EWPT

Increasing m_{h}

Potential B
 phases

EW Multiplets: Two-Step EWPT

Increasing m_{h}
\longleftarrow New scalars

- Step 1: thermal loops
- Step 2: tree-level barrier

EW Multiplets: Two-Step EWPT

Increasing m_{h}

EW Multiplets: Two-Step EWPT

EW Multiplets: 2HDM

Increasing m_{h}

Difference between Synmetric - Broken phase in CW piece guaranteed for large BSM mass splitting!

A-III. Theoretical Robustness

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT \& dependence on parameters
- Broad survey of scenarios \& parameter space not viable
B. Perturbative
- Most feasible approach to survey broad ranges of models, analyze parameter space, \& predict experimental signatures
- Quantitative reliability needs to be verified

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT \& dependence on parameters
- Broad survey of scenarios \& parameter space not viable
B. Perturbative mark pert
- NB: Recible approach to survey broad ranges of models, analyze parameter space, \& predict experimental signatures
- Quantitative reliability needs to be verified

EWPT \& Perturbation Theory

Expansion parameter

SM lattice studies: $g_{\text {eff }} \sim 0.8$ in vicinity of EWPT for $m_{H} \sim 70 \mathrm{GeV}$

EW Multiplets: One-Step EWPT?

Increasing m_{h}
\longleftarrow New scalars

- One-step: thermal loops

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Real Triplet \& EWPT

Real Triplet Example: Lessons

- Initial non-perturbative studies using 3d EFT reveals regions of FOEWPT \& crossover transition not evident in PT
- Next generation circular e+e- and pp colliders likely necessary to access these region: a first order transition \rightarrow Observable shift in $h \rightarrow \gamma \gamma$ rate
- Next generation colliders will have needed sensitivity

EW Multiplets: Two-Step EWPT

Increasing m_{h}

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Real Triplet \& EWPT

Scalar Singlets \& EWPT: Collider Reach

SFOEWPT Benchmarks: Resonant di-Higgs \& precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

Real Singlet \& EWPT: Lattice "Repurpose"

Heavy Real Singlet \& EWPT: Probes

Heavy Real Singlet: EWPT \& GW

Non-dynamical heavy BSM scalars

- One-step
- Non-perturbative

Heavy Real Singlet: EWPT \& GW

- One-step
- Non-perturbative

A-IV. EWPT Outlook

Questions for Future Colliders

- What is the "value added"?
- What are the synergies/complementarities involving the pp, ee, and ep colliders ?
- Are there well-defined targets in mass reach and precision that would definitively address key open questions?

EWPT

- Value added

Extend reach significantly beyond HL-LHC

- Synergy/complementarity

Look for correspondence between new states (hh mode) and modified Higgs couplings (ee \& hh modes)

- Well-defined target in mass and/or precision

Singlets: $100 \mathrm{TeV}+30 a b^{-1}$
EW Multiplets: < 10\% on h $\gamma \gamma$

[^0]: Future Colliders Workshop
 IFT Madrid, June-July 2019

[^1]: Thanks: D. Weir

