

Small scale puzzles [and their solution]

Justin I. Read

Matthew Walker, Pascal Steger, Oscar Agertz, Michelle Collins, Denis Erkal, Giuliano Iorio, Filippo Fraternali, Alexandra Gregory The Standard Cosmological Model

Planck 2015

The standard cosmological model

Tegmark & Zaldarriaga 2002

Small scale puzzles

z = 48.4

"Aquarius" pure dark matter simulation of structure formation in an LCDM cosmology [Springel et al. 2008]

$T = 0.05 \, Gyr$

500 kpc

Volker Springel Max-Planck-Institute for Astrophysics

#2 : "Cusp-core" problem [Flores et al. 1994; Moore 1994]

Volker Springel Max-Planck-Institute for Astrophysics

Pure Dark Matter Simulations

Observed Universe

Which of these form stars?

Volker Springel Max-Planck-Institute for Astrophysics

Dark Matter Heating

Navarro et al. 1996; Gnedin & Zhao 2002; Read & Gilmore 2005 Pontzen & Governato 2012

Simulations | Resolving stellar feedback

 $\Delta x = 4 \text{ pc}$ $M_{\text{res}} = 300 \text{ M}_{\odot}$ $\rho_{\text{th}} = 300 \text{ atoms/cc}$ $T_{\text{gas,min}} = 100 \text{ K}$

The Cusp-Core Problem Revisited

Read et al. 2016b,2017

Read et al. 2016b,2017

Missing Satellites Revisited

Missing satellites | Isolated gas rich dwarfs

Read et al. 2017; and see Katz et al. 2017

Missing satellites | Isolated gas rich dwarfs

Missing satellites I Isolated gas rich dwarfs

Missing satellites I Isolated gas rich dwarfs

"Smoking gun" evidence for DM heating

Less star formation \Rightarrow more cusp

Less star formation \Rightarrow more cusp

Less star formation \Rightarrow more cusp

Leroy, Nature 2015

Rotation curves

Fornax

Stellar kinematics

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

UNIVERSITY OF

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

UNIVERSITY OF

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Conclusions

- Accounting for the observed stellar mass-halo mass relation, there is no missing satellites problem
- Accounting for dark matter heating, there is no cusp-core problem.
- We have found "smoking gun" evidence for dark matter heating: dwarf galaxies with more star formation have lower central dark matter densities.
- Dark matter appears to be a cold, collisionless fluid that can be heated up and moved around.

Justin I. Read

EXTRA SLIDES

Stellar feedback

Stellar feedback & galactic winds

NGC1569 | Martin et al. 2002

NGC1482 | Veilleux et al. 2002

and see Strickland & Heckman 2009; McQuinn et al. 2018

Stellar feedback & galactic winds

X-ray H-alpha <mark>8-µ</mark>m

Chu et al. 2005

Simulation requirements

Stellar feedback & galactic winds

Westmoquette et al. 2009; and see Strickland & Heckman 2009; McQuinn et al. 2018

 $\Delta x < 50 \,\mathrm{pc}$ $M_{\mathrm{res}} < 1000 \,\mathrm{M}_{\odot}$

 $\Delta x < 50 \,\mathrm{pc}$ $M_{\rm res} < 1000 \,\mathrm{M_{\odot}}$ $\rho_{\rm th} > 100 \,\mathrm{atoms/cc}$ $T_{\rm gas,min} < 100 \,\mathrm{K}$

 $\Delta x < 50 \text{ pc}$ $M_{\text{res}} < 1000 \text{ M}_{\odot}$ $\rho_{\text{th}} > 100 \text{ atoms/cc}$ $T_{\text{gas,min}} < 100 \text{ K}$

Simulations that do not meet these requirements will not resolve gas flows

no cusp-core transformations

Pontzen & Governato 2012; Read et al. 2016; Bose et al. 2018; Benitez-Llambay et al. 2018

Stellar feedback | Overcooling

e.g. Agertz et al. 2013; Dalla Vecchia & Schaye 2008

Stellar feedback | Overcooling

e.g. Agertz et al. 2013; Dalla Vecchia & Schaye 2008

Simulation robustness

Simulations | Cusp-core transformations

Read et al. 2016

Modelling Super-bubbles

Simulations | Cusp-core transformations

Read et al. 2016

Observational tests of cusp-core forms

Predictions | Kinematically "hot" stars

Predictions | Kinematically "hot" stars

Read & Gilmore 2005; Teyssier et al. 2013

Tests with mock data

Rotation curve fitting | Tests with mock data

GravSphere | Tests with mock data

GravSphere | Tests with mock data

GravSphere | Tests with mock data

Robustness

SIDM results

 $\sigma/m < 0.57 \,\mathrm{cm}^2 \,\mathrm{g}^{-1}$ at 99% confidence.

Read et al. 2018 (arXiv:1805.06934)

Pre-infall halo masses

Cosmological simulations

E.D.G.E.

Engineering Dwarfs at Galaxy formation's Edge

Oscar Agertz Andrew Pontzen Justin Read

Cosmological simulations | E.D.G.E.

 $M_{\rm DM} = 960 \,\mathrm{M}_{\odot} \,\mathrm{(fiducial)}, 120 \,\mathrm{M}_{\odot} \,\mathrm{(high)} \mid M_{\rm bar} = 160 \,\mathrm{M}_{\odot}$

Agertz, Pontzen & Read in prep. 2018

Cosmological simulations | Cores & cusps in an ultra-faint

Agertz, Pontzen & Read in prep. 2018

Cosmological simulations | Cores & cusps in an ultra-faint

Agertz, Pontzen & Read in prep. 2018

Testing Predictions from DM Heating Models

• Bursty star formation. [Dohm-Palmer et al. 1998, 2002; Teyssier et al. 2013; Kauffmann 2014; Sparre et al. 2017]

• Stars kinematically "heated" along with the dark matter $\Rightarrow v/\sigma < 1$.

[Read & Gilmore 2005; Teyssier et al. 2013; Leaman et al. 2012; Wheeler et al. 2017]

• Radial migration of stars \Rightarrow age gradients.

[El-Badry et al. 2016; Zhang et al. 2012]

Stinson et al. 2007; Bose et al. 2018

More data

Gregory et al. 2019, MNRAS submitted