Small scale puzzles [and their solution]

Justin I. Read
Matthew Walker, Pascal Steger, Oscar Agertz, Michelle Collins; Denis Erkal, Giuliano Iorio, Filippo Fraternali, Alexandra Gíegory

The Standard

 Cosmological Model
The standard cosmological model

The standard cosmological model

Tegmark \& Zaldarriaga 2002

Small scale puzzles

"Aquarius" pure dark matter
simulation of structure formation in an
LCDM cosmology
[Springel et al. 2008]

\#1 : "Missing satellites" problem [Klypin et al. 1999; Moore et al. 1999]

\#2 : "Cusp-core" problem

[Flores et al. 1994; Moore 1994]

Pure Dark Matter Simulations

Observed Universe

Which of these form stars?

Dark Matter Heating

The physics of dark matter heating

Inflow

Outflow

Repeat

Navarro et al. 1996; Gnedin \& Zhao 2002; Read \& Gilmore 2005 Pontzen \& Governato 2012

Simulations I Resolving stellar feedback

$$
\begin{aligned}
& \Delta x=4 \mathrm{pc} \\
& M_{\mathrm{res}}=300 \mathrm{M}_{\odot} \\
& \rho_{\mathrm{th}}=300 \text { atoms } / \mathrm{cc} \\
& T_{\mathrm{gas}, \min }=100 \mathrm{~K}
\end{aligned}
$$

$$
l=0.00 \mathrm{Gyr}
$$

Read et al. 2016

Simulations I Resolving gas flows

Read et al. 2016

Simulations I Resolving gas flows

Read et al. 2016

Simulations I Resolving gas flows

Read et al. 2016

Simulations I Resolving gas flows

Read et al. 2016

Simulations I Cusp-core transformations

Read et al. 2016

Simulations I Cusp-core transformations

Read et al. 2016

The Cusp-Core Problem Revisited

Measurement I Rotation cuves

Read et al. 2016b,2017

Read et al. 2016b,2017

Missing Satellites Revisited

Missing satellites I Isolated gas rich dwarfs

Read et al. 2017; and see Katz et al. 2017

Read et al. 2017

Missing satellites I Isolated gas rich dwarfs

Missing satellites I Isolated gas rich dwarfs

"Smoking gun" evidence for DM heating

Less star formation \Rightarrow more cusp

Read et al. 2016

Less star formation \Rightarrow more cusp

WLM

Fornax

ESO/Digitized Sky Survey 2

Decreasing star formation

Draco

Robert Lupton \& SDSS

More $\overrightarrow{\text { DM }}$ cusp!

Less star formation \Rightarrow more cusp

Fornax

ESO/Digitized Sky Survey 2

Rotation curves
Stellar kinematics

Less star formation \Rightarrow more cusp

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Less star formation \Rightarrow more cusp

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Less star formation \Rightarrow more cusp

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Less star formation \Rightarrow more cusp

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Read et al. 2018a,b,c: arXiv:1805.06934; arXiv:1807.07093; arXiv:1808.06634

Conclusions

- Accounting for the observed stellar mass-halo mass relation, there is no missing satellites problem
- Accounting for dark matter heating, there is no cusp-core problem.
- We have found "smoking gun" evidence for dark matter heating: dwarf galaxies with more star formation have lower central dark matter densities.
- Dark matter appears to be a cold, collisionless fluid that can be heated up and moved around.

Stellar feedback

Stellar feedback \& galactic winds

NGC1569 I Martin et al. 2002

Stellar feedback \& galactic winds

SURSROF

X-ray
H-alpha

N. 144

Simulation requirements

Stellar feedback \& galactic winds

Image composite credit: Leisa Townsley et al. 2006

Stellar feedback \& galactic winds

2 kpc

Westmoquette et al. 2009; and see Strickland \& Heckman 2009; McQuinn et al. 2018

Stellar feedback I Simulation requirements

Image composite credit: Leisa Townsley et al. 2006

Stellar feedback I Simulation requirements

Image composite credit: Leisa Townsley et al. 2006

Stellar feedback I Simulation requirements

$$
\begin{aligned}
& \Delta x<50 \mathrm{pc} \\
& M_{\mathrm{res}}<1000 \mathrm{M}_{\odot}
\end{aligned}
$$

$\rho_{\text {th }}>100$ atoms $/ \mathrm{cc}$ $T_{\text {gas }, \min }<100 \mathrm{~K}$

30 Doradus

$0.5-2 \mathrm{keV}$ ACIS-I
MCELS H-alpha
(You-Hua Chu)
Spitzer 8 microns
(Bernhard Brandl)

Stellar feedback I Simulation requirements

$\Delta x<50 \mathrm{pc}$
$M_{\text {res }}<1000 \mathrm{M}_{\odot}$
$\rho_{\text {th }}>100$ atoms $/ \mathrm{cc}$
$T_{\text {gas }, \text { min }}<100 \mathrm{~K}$

Simulations that do not meet these requirements will not resolve gas flows

no cusp-core transformations

Pontzen \& Governato 2012; Read et al. 2016; Bose et al. 2018; Benitez-Llambay et al. 2018

Stellar feedback I Overcooling

Stellar feedback I Overcooling

e.g. Agertz et al. 2013; Dalla Vecchia \& Schaye 2008

Simulation robustness

Simulations | Cusp-core transformations

Modelling Super-bubbles

Simulations | Cusp-core transformations

$\mathrm{t}=5.09 \mathrm{Myr}$

Density

Temperature

Observational tests of cusp-core forms

Predictions I Bursty star formation

Read et al. 2016; Teyssier et al. 2013; Pontzen \& Governato 2011/2014; Kauffmann 2014

Predictions I Bursty star formation

Read et al. 2016; Teyssier et al. 2013; Pontzen \& Governato 2011/2014; Kauffmann 2014

Predictions I Bursty star formation

Read et al. 2016; Teyssier et al. 2013; Pontzen \& Governato 2011/2014; Kauffmann 2014

Predictions I Bursty star formation

Read et al. 2016; Teyssier et al. 2013; Pontzen \& Governato 2011/2014; Kauffmann 2014

Predictions I Kinematically "hot" stars

Read \& Gilmore 2005; Teyssier et al. 2013

Tests with mock data

Rotation curve fitting | Tests with mock data

Rotation curv o or esus, with mock data,

GravSphere | Tests with mock data

Mock 'Milky Way’ stellar disc

Draco

50kpc

GravSphere | Tests with mock data

GravSphere | Tests with mock data

Robustness

SIDM results

Read et al. 2018 (arXiv:1805.06934)

Pre-infall halo masses

Cosmological simulations

E.D.G.E.

Hngineering Dwarfs at Galaxy formation's झdge

Oscar Agertz Andrew Pontzen Justin Read

Cosmological simulations | E.D.G.E.

Dark matter Gas Density

Temperature
Iron

Cosmological simulations | Cores \& cusps in an ultra-faint

Agertz, Pontzen \& Read in prep. 2018

Cosmological simulations | Cores \& cusps in an ultra-faint

Agertz, Pontzen \& Read in prep. 2018

Testing Predictions from DM Heating Models

Predictions

- Bursty star formation.
[Dohm-Palmer et al. 1998, 2002; Teyssier et al. 2013; Kauffmann 2014;
Sparre et al. 2017]
- Stars kinematically "heated" along with the dark matter $\Rightarrow \mathrm{v} / \sigma<1$.
[Read \& Gilmore 2005; Teyssier et al. 2013; Leaman et al. 2012; Wheeler et al. 2017]
- Radial migration of stars \Rightarrow age gradients.
[El-Badry et al. 2016; Zhang et al. 2012]

Predictions

Gravitational DM cusp-core
transformations Potential fluctuations $\left[t_{\text {fluc }} \sim t_{\mathrm{dyn}} \mid \Delta M_{\mathrm{gas}} / M_{\mathrm{DM}} \sim 10 \%\right]$

- Bursty star formation
-"Hot" stellar kinematics
- Stellar age gradients

Stinson et al. 2007; Bose et al. 2018

More data

Gregory et al. 2019, MNRAS submitted

