

# Light dark matter @ atomic clocks and co-magnetometers

### Diego Blas

w./ R. Alonso (IPMU) and P. Wolf (Paris Observatory) 1810.00889 & 1810.01632

# A growing field...



### **Quantum Sensing for High Energy Physics**

Zeeshan Ahmed (SLAC) et al.. Mar 29, 2018. 38 pp. FERMILAB-CONF-18-092-AD-AE-DI-PPD-T-TD

Conference: C17-12-12

e-Print: arXiv:1803.11306 [hep-ex] | PDF

# Quantum Sensors for Fundamental Physics Oxford, UK

16 October - 17 October 2018 Oxford, UK

+ many new ideas/reviews on the theory side

I will only discuss astrophysical backgrounds

### Fresh view on DM

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

### Fresh view on DM

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection



MACHOS, BHs,...

# For the Milky Way



expectation in the Solar system 
$$\begin{cases} \rho_{\odot} \sim 0.3\,\mathrm{GeV/cm^3} \\ m_{\chi} \langle v_{\odot} \rangle \sim 10^{-3} m_{\chi} c \end{cases}$$
 flux: 
$$10^{10} \left( \frac{\mathrm{MeV}}{m_{\chi}} \right) \,\mathrm{cm^{-2}s^{-1}}$$

### 'Traditional' Direct Detection

### scattering





dramatic loss of sensitivity at low mass (still 'high' mass)

### 'Traditional' Direct Detection



dramatic loss of sensitivity at low mass (still 'high' ma

# Measuring at q=0: Ramsey sequence

(atomic clock basics)



$$\partial P_2 = 0$$
  $\omega_{\text{max}} = \Delta E$ 

measurement of the phase difference  $e^{iHT}$ 

will be sensitive to anything of the form  $\,H_i=E_i^{\rm free}+V_i\,$  provided  $\delta V_i \neq 0$ 

# DM-atom interaction during Ramsey sequence



for low masses (all the atoms stay in the clock) & small coupling forward scattering

$$P_2 = \cos[\Delta\omega T/2]^2 + \frac{\pi n_{\chi} v T}{p_{\chi}} \operatorname{Re}[\bar{f}_1(0) - \bar{f}_2(0)] \sin[\Delta\omega T]$$

$$\partial P_2 = 0$$
  $\omega_{\text{max}} = \Delta E + \delta_{\text{DM}}$ 

# DM-atom scattering: effective vertex



At the level of e, N:  $\vec{S}_e \cdot \vec{v}_\chi$  ,  $\vec{S}_e \cdot \vec{S}_\chi$  ,  $\vec{S}_N \cdot \vec{S}_\chi$  , ....

### Main results



nucleon form factors  $G_N(G_u, G_d)$ 

for scattering with axial vectors

$$A_{\mu}(\mathbf{p}_{\chi})$$

$$\psi(\mathbf{p}_{\psi})$$

$$\psi(\mathbf{p}_{\psi})$$

$$f_1(0) - f_2(0) = \frac{-1}{\pi m_A} \left( (g_N^A)^2 \mathfrak{g}_{Ncl}^N - (g_e^A)^2 \right) \frac{\vec{\lambda}_A \cdot \vec{\lambda}}{F}.$$

(cancels at first order for axions)

### Which DM-atom interactions?

$$\bar{f}(0)_1 - \bar{f}(0)_2$$

The two states have different *spin*We easily probe *spin-dependent interactions* 

$$ec{S}_e \cdot ec{v}_\chi$$
 ,  $ec{S}_e \cdot ec{S}_\chi$  , ....

### average effect

the relative velocity contains a **coherent** part the DM spin is in principle **arbitrary** 

$$O(1/\sqrt{N})$$
 'noise'\*

\* depends on  $N_{
m at}^{\chi}$ 

### final remark

one needs to make sure that the effect is not confused with atomic physics/backgrounds (e.g. use daily modulation, system comparison...)



# Atomic magnetometers basics

$$H_{\mathrm{int}} = -\gamma \vec{B} \cdot \vec{\lambda}$$



$$\omega \equiv \gamma \beta = \gamma \left( B \right)$$

# DM-atom interaction in co-magnetometers

$$H_{\mathrm{int}} = -\gamma \vec{B} \cdot \vec{\lambda}$$



$$\omega \equiv \gamma \beta = \gamma \left( B + \frac{2\pi n_{\chi}}{m_{\chi} \gamma} \left( \bar{f}(0)_1 - \bar{f}(0)_2 \right) \right)$$

Modified Larmor frequencies

Can be also understood as a phase difference

Co-magnetometer: eliminates B

# The ultra-light domain: galactic configuration

For  $m \lesssim 10~{\rm eV}$  high occupation numbers in the MW (similar to classical EM)



Collection of virialized waves

$$\phi \propto \int_0^{v_{max}} d^3 v \, e^{-v^2/\sigma_0^2} e^{i\omega_v t} e^{-im\vec{v}\cdot\vec{x}} e^{if\vec{v}} + c.c.$$

in the MW  $\sigma_0 \sim 10^{-3} c$ 

since  $\omega_v \approx m(1+v^2)$ , oscillations coherently over

$$t \sim 10^6 \left(\frac{10^{-15} \,\text{eV}}{m}\right) \left(\frac{10^{-6}}{\sigma_0^2}\right) s$$

# The ultra-light domain: interaction with atoms



these are now 'oscillating' backgrounds!

Graham et al 17

for generic couplings this means the oscillation of 'fundamental constants'

e.g. 
$$(m+g_{\phi ee}\bar{\phi}(t))\bar{e}e$$

different effect in different atoms: can be searched for in clocks!

# Ultra-light case





The atoms live in a background with some coherent features and for certain dark matter models

$$V_2 - V_1 \neq 0$$

# Ultra-light case





The atoms live in a background with some coherent features and for certain dark matter models

$$V_2 - V_1 \neq 0$$

# Constraints: three examples

scalar DM 
$$L_{\rm int} = -G_n \int \mathrm{d}^3x \, (\bar{n}\gamma^\mu \gamma_5 n) \, \big(i\chi^\dagger \partial_\mu \chi + \mathrm{h.c.}\big)$$

$$\vec{S}_n \cdot \vec{v}_{\chi}$$



# Constraints: three examples

$$L_{\rm int} = g_n^A \int d^3x A^\mu \bar{n} \gamma_\mu \gamma_5 n$$



# Constraints: three examples

fermionic DM with light mediator

$$L_{\text{int}} = -g_{\tilde{A}}g_{\chi} \int d^3x \left(\bar{n}\gamma^{\mu}\gamma_5 n\right) \frac{1}{m_{\tilde{A}}^2 + \square} \left(\bar{\chi}^{\dagger}\gamma^{\mu}\gamma_5 \chi\right)$$

$$\vec{S}_n \cdot \vec{S}_{\chi}/m_{\tilde{A}}^2$$



# Summary and Conclusions

Precise (quantum) devices perfect for small momentum transfer (typical of low mass DM)

Standard operation of atomic clocks/magnetometers yields new bounds on some 'putative' DM models

This seems just the beginning...

### **Future**

- More complete framework for some models (cosmology)
- Perform the atomic clock measurements (at  $\lambda \neq 0$ )
- Bounds on other operators (may be enhanced by #nucleons)

when 
$$\bar{f}(0)_1 - \bar{f}(0)_2 \neq 0$$

- Neutrinos? (CnB seems out of reach) Gravitational waves?
- Devices close to beams? To study coherent scattering?
- Other precise devices...

# The ultra-light domain



virial equilibrium in the Milky Way (MW) halo:

- i) scape velocity  $\sim 2 \times 10^{-3} c$
- ii) size 100 kpc

$$\Delta x \Delta p \gtrsim \hbar \rightarrow N_s \sim 10^{75} \left(\frac{m}{\text{eV}}\right)^3 \rightarrow N_p = \frac{M_{MW}}{N_s m} \sim 10^3 \left(\frac{\text{eV}}{m}\right)^4$$

This logic tells us that DM can't be fermionic for mass  $\lesssim \mathrm{keV}$ 

For high occupation number → field description

e.g. massive scalar case  $\phi(x,t)$ 

$$\Box \phi(x,t) + m^2 \phi(x,t) = 0$$