
https://root.cern

ROOT
Data Analysis Framework

News from the ROOT Team

D. Piparo (CERN, EP-SFT) for the ROOT team

https://root.cern

ROOT Releases

▶ v6.14/6 to be announced this week
▶ v6-16-00-patches branch created today

● v6-16-00-rc1 tag available for testing by experiments
▶ We fixed these blockers

ROOT-9743, ROOT-9757, ROOT-9666, ROOT-9668, ROOT-9686, ROOT-9719,
ROOT-9725

▶ We are working on a few remaining blockers:

ROOT-9637, ROOT-9660, ROOT-9668, ROOT-9709

2D.P.

Implicit Parallelism
Removal of Task Interleaving

Nested Parallelism, Work Stealing

▶ ROOT adopts a task-based parallelism approach

▶ Crucial to keep all cores busy all the time, reducing imbalance

▶ Two behaviours which help there:

● Nested parallelism: a task can launch smaller tasks and wait for

them.

● Work stealing: idle workers randomly steal tasks from other

workers’ queues

▶ Both present in ROOT

4D.P.

The issue: “Task Interleaving”

▶ A thread is idle since the task it is running is waiting for all subtasks
to finish, all sub-items of work were stolen.

▶ A new item of work is started within the very same thread, from the
very function which was “paused” for waiting the subtasks

This requires items of work to be re-entrant!

▶ Hard to implement and hard to explain to users

Re-entrant: “it can be interrupted in the middle of its execution and then
safely be called again ("re-entered") before its previous invocations complete
execution.”

5D.P.

Example 1: RDataFrame
▶ ROOT flushes baskets on disk in parallel

● This happen through the submission of several compression-tasks
▶ ROOT reads branches in parallel

● TTree::GetEntry
▶ RDataFrame parallelises the processing over event clusters

● 1 task per cluster

It can happen that the processing of a range of events (a cluster) is
blocked because of nested parallelism. The processing of a range of
events can start while the processing of a different range of events is
idle, within the very same thread.

See issue reported at Atlas ASG meeting:
https://indico.cern.ch/event/767992/

6D.P.

https://indico.cern.ch/event/767992/

Example 2: CMS Simulation

▶ Again ROOT’s parallel flush baskets
▶ A task in this context can contain the simulation of an entire event

● even ~1 minute long

The simulation of a new event could be started therewith blocking
the writing a bunch of other events

See issue reported at the ROOT IO Workshop by CMS:
https://indico.cern.ch/event/715802

7D.P.

https://indico.cern.ch/event/715802

The Solution: Work Isolation
▶ In a nutshell: forbid stealing tasks spawned by parents
▶ Nested parallelism and work stealing continue to work, with a more limited

scope
▶ This implies (among other things) that:

● In RDF, the processing of a range of events can never be interrupted by
the processing of another range.

● In CMSSW, no G4 task (actually no fwk task), can be stolen by ROOT’s
tasks

▶ Directives for the user:
● Express parallelism with ROOT primitives is always OK
● Nest TBB parallelism within ROOT parallelism is OK provided that TBB

parallelism is isolated
▶ See https://software.intel.com/en-us/node/684814

8D.P.

https://software.intel.com/en-us/node/684814

Consequences on Performance/Scaling

▶ Work isolation will be in ROOT 6.16 and 6.14.08
▶ Removing task interleaving allowed to simplify ROOT

● E.g. RDF, TTreeProcessorMT
▶ No performance penalty could be measured. On the contrary...
▶ … Parallel analysis of large Totem datasets improved runtime by 30%
▶ … Simple Atlas SUSY studies improved runtime by 10%

9D.P.

