Data models

Zacharias Zacharodimos
CERN

Outline

Data model
JSONSchema
Mapping
Loaders
Serializers
Entrypoints

Data model

What is a data model?

Data model

 Data format

Data model

« Data format
« External to internal representation

Data model

« Data format
« External to internal representation
* Internal to external representation

Data model

Data format

External to internal representation
Internal to external representation
Data Access management

JSONSchema

“JSON Schema is a vocabulary that allows you to annotate and validate JSON documents. i

https://json-schema.org

https://json-schema.org/

JSONSchema

e Describe your JSON data format

https://json-schema.org

https://json-schema.org/

JSONSchema

e Describe your JSON data format
e Provide a human and machine readable documentation

https://json-schema.org

https://json-schema.org/

JSONSchema

e Describe your JSON data format
e Provide a human and machine readable documentation
e Ensure validation of your data

https://json-schema.org

https://json-schema.org/

Mapping

“Mapping is the process of defining how a document and its fields are stored and indexed”

https://www.elastic.co/quide/en/elasticsearch/reference/current/mapping.htm

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Mapping

« Describe your data format
» Describe which fields are numbers, dates or geolocations
« Format of date fields (e.g 'yyyy-MM-dd")

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Mapping

« Describe your data format

» Describe which fields are numbers, dates or geolocations
« Format of date fields (e.g 'yyyy-MM-dd")
« Describe which fields should be indexed so they can be searchable

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Mapping

« Describe your data format

» Describe which fields are numbers, dates or geolocations

« Format of date fields (e.g 'yyyy-MM-dd")
« Describe which fields should be indexed so they can be searchable
* Describe how dynamically added fields should be handled

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Mapping

« Describe your data format
» Describe which fields are numbers, dates or geolocations
« Format of date fields (e.g 'yyyy-MM-dd")
« Describe which fields should be indexed so they can be searchable
* Describe how dynamically added fields should be handled
« Describe how fields should be analyzed when are indexed

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Loaders

“You can think of loaders as the definition of your input formats for records”

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-loaders

Loaders

« Loaders are responsible to transform your request payload into
internal JSON format

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-loaders

Loaders

« Loaders are responsible to transform your request payload into
internal JSON format
* Request data validation

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-loaders

Serializers

“You can think of serializers as the definition of your output formats for records”

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-serializers

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-serializers

Serializers

« Serializers are responsible to transform your internal JSON format to
an external representation
« Different output formats(e.g JSON, XML, MARCXML, etc.)

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-serializers

Serializers

« Serializers are responsible to transform your internal JSON format to
an external representation
« Different output formats(e.g JSON, XML, MARCXML, etc.)
« Control which fields should be returned when retrieving a record

https://invenio.readthedocs.io/en/latest/tutorials/understanding-data-models.html#define-serializers

Entrypoints

“What is this "setup.py ?”

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

* Invenio is developed as a Flask application

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

* Invenio is developed as a Flask application
» All its different modules have been developed as Flask extensions
that wrap the final application and add up functionality.

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

But how are these extensions are being discovered and registered?

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

But how are these extensions are being discovered and registered?

» Using python setuptools package
+ Setuptools is a collection of enhancements in Python that help developers to build and distribute
python packages, especially if your package has dependencies on other

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

But how are these extensions are being discovered and registered?

» Using python setuptools package

+ Setuptools is a collection of enhancements in Python that help developers to build and distribute
python packages, especially if your package has dependencies on other

* Using the entry_points ke%/word argument in your setup.py you can
specify a dictionary mapping of entry_point_group name to strings or list
of strings

® Eg setup(# ... entry_points={'group.subgroup": 'entry_point_name = some_module:SomeClass'})

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

But how are these extensions are being discovered and registered?

» Using python setuptools package

+ Setuptools is a collection of enhancements in Python that help developers to build and distribute
python packages, especially if your package has dependencies on other

* Using the entry_points ke%/word argument in your setup.py you can
specify a dictionary mapping of entry_point_group name to strings or list

of strings
® Eg setup(# ... entry_points={'group.subgroup": 'entry_point_name = some_module:SomeClass'})

« The entry_points are used to dynamically discover plugins and services
provided by a project

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

Example

Blogging tool that allows translation plugins
"‘Blogtool.parsers’ entry point group name

Distributions register their parsers under this entrypoint group
Blogging tool discovers on runtime all the available parsers

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html

Entrypoints

In the same fashion every Invenio module provide its entrypoint groups So
other modules or instances can use them to register their services.

For example:
Invenio module, i.e. invenio-jsonschemas/ext.py

entry point group = 'invenio_jsonschemas.schemas'

Your data model module

'invenio_jsonschemas.schemas': | if entry point group:
yrds.jsonschemas', for base entry pkg resources.iter entry points(
entry point group) :
directory = os.path.dirname (base entry.load(). file)

state.register schemas dir (directory)

https://setuptools.readthedocs.io/en/latest/setuptools.html

https://setuptools.readthedocs.io/en/latest/setuptools.html
https://github.com/inveniosoftware/invenio-jsonschemas/blob/93019b8fe3bf549335e94c84198c9c0b76d8fde2/invenio_jsonschemas/ext.py#L225-L230

CE/R_W
\

Questions?

