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 972 km from Padua

 235 km from Berlin, 265 km from Hamburg

Padua

Greifswald
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Leibniz Institute for Plasma 
Science and Technology 

(INP) 

Application-driven research

 surface modification and chemistry

 process diagnostics and monitoring 

 biomaterials and surfaces 

 plasma medicine, plasma decontamination

 high-voltage techniques

 switching and welding arcs

 49 laboratories
 200 employers
 annual budget  20 M€ 



Introduction: switching arc research

Charging 

voltage

50 V – 3500 V

Min current 1.3 kA@ 50 Hz

Max current 100 kA @ 50 Hz

TRV level 41.5 kV @ 1000 Hz 

DAC

Charging voltage 500 V – 18000 V

Min current 100 A@ 50 Hz

Max current 10 kA @ 50 Hz

Other features No TRV

Flexible frequency 16 Hz –

1000 Hz, pulsed DC operation

since 06.2015 since 07.2019
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vacuum circuit breaker

 Volume 0.003 – 10 l

 Stroke 0.5 – 25 mm

 Operation velocity 0.1 - 5 m/s

model circuit breaker

 Volume 52 l

 Mountings for various electrodes

 Stroke 0.5 - 25 mm

 Operation velocity 0.5 - 4 m/s



Motivation
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 Electrodes in high-power applications 

 current transfer

 interaction with substrate

 material source (vacuum arcs, welding, coating)

 source of problems – damage through erosion → contamination of plasma, gas, 

walls with electrode material, strong surface deformation → operation failure

 Processes to be understand, behavior to be characterized 

 heating and cooling dynamics

 behavior of melted surface

 erosion behavior → vapor and droplets

 interaction with plasma

 Monitoring of electrode temperature is crucial for phenomena understanding and 

device optimization
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Vacuum circuit breakers

 environmentally friendly operation 

High-current operation

 (strong) electrode melting and evaporation

 atomic vapour as possible source for restrikes

 hot anode – major source of atomic vapour

Focus on the anode surface temperature measurements

Cathode

Anode

cathode

anode

diffuse footpointintense mode anode spot anode plume

success

failure
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Optical diagnostics: advantages and disadvantages
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 “Classical” method (thermocouple) fails

 probes will be damaged when placed within the region of interest

 signal distortion due to EM fields

 high spatial (and temporal) resolution required

 Clear advantages of optical methods

 non-invasive

 qualitative and quantitative measurements possible

 high spatial resolution  – local properties 

 high temporal resolution – dynamics 

 applicable in a wide parameter range due to variability of methods 

 Some disadvantages  of optical measurements

 optical access to the object  necessary

 radiation intensity must be sufficient

 distortions in the optical pathway through hot fluxes and plasma itself 

 costs of the devices, complex apparatus and evaluation methods



Optical diagnostics: basics of temperature determination
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 Black-body radiation acc. to Planck’s law

 One measured value, but two unknowns – standard solution ways

 known emissivity from other measurements or theory

 measurements at two different wavelengths
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Optical diagnostics: basics of temperature determination
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 Data for emissivity

 Mostly known for “clean” surfaces

 measured at idealized conditions

 however emissivity depends on

 chemical composition

 surface roughness

 surface “state” – solid, liquid, boiling, phase transition…

 view angle

 Best solution – ín-situ measurements simultaneously with temperature measurements

𝐵𝜆 𝑇 = 𝜀(𝜆, 𝑇)
2ℎ𝑐2
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 Two-colour pyrometry

 Assumption   𝜀 𝜆, 𝑇 = 𝜀 𝑇 and Wien approximation

1
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 Assumption could be too rough due to

 complex chemical composition

 surface roughness

 surface “state” – solid, liquid, boiling, phase transition…

 Best solution – small difference between the wavelengths, but (!) significant errors  

 careful choice of wavelength range necessary

𝐵𝜆 𝑇 = 𝜀(𝜆, 𝑇)
2ℎ𝑐2
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 Selected methods 

 Pyrometry (commercial)

 Thermography (commercial)

 Optical Emission Spectroscopy (OES) (scientific)

 High-speed camera (HSC) techniques enhanced by filter (scientific)

 Method choice and requirements

 sensitivity  surface should emit radiation (T high enough)

 possible distortions 

 plasma radiation is either absent or can be excluded from consideration

 oxides and surface impurities influences the results

 smooth surfaces/low roughness preferable



Optical diagnostics: pyrometry
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Advantages

 Commercially available devices (pyrometer)

 Acquisition time between 10µs and 1s

 Temperature range 200-4000 K

 Simple setup and arrangement

 Determination of the cooling dynamics possible

Disadvantages/ restrictions

 Emissivity of the surface must be known (exception two-colour 

pyrometer)

 Special optics (windows)  depending on the temperature and 

spectral range necessary

 Time resolved measurements with rough spatial resolution 

(min spot size 0.5 - 1mm)

Kleiber Pyroskop



Optical diagnostics: thermography
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Advantages

 Commercially available devices 

 2D temperature distribution at one shot

 Temperature range 200-5000 K 

 Simple setup and arrangement

 Determination of the cooling dynamics possible

Disadvantages/ restrictions 

 Emissivity of the surface must be known (exception – two color cameras)

 Special optics (windows)  depending on the temperature and spectral 

range necessary

 Time resolved measurements with full size typically with 60 -125  Hz, but 

(!) temporal resolution with reduced number of pixels possible (up to 10 

kHz)

IR camera 

VarioCAM with 60 

Hz techniques

IR camera FLIR 

with 125 Hz 

techniques



Optical diagnostics: emission spectroscopy
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Advantages

 Time resolve measurements possible

 Simultaneous determination of surface emissivity possible

 Flexibility by choice of spectral range

 Characterization of surface impurities possible

Disadvantages/Restrictions

 Light intensity  calibration necessary (tungsten strip lamp)

 Space resolved measurements along the slit

 Additional optical setup necessary

Projection of the 

entrance slit

Temperature 

distribution



Optical diagnostics: high-speed camera techniques
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Advantages

 Time resolved measurements

 2D picture of the surface

 Manageable effort for setup

Disadvantages/Restrictions

 Special optical filters (MIF, narrow band)/ optical modules necessary

 Light intensity  calibration necessary

 Possible impurities of the surface should be taken into account

HSC MotionPro Y4

Temperature 

distribution

HSC image
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• Ignition phase

• High-current phase 

(active phase)

• Current zero crossing

• Post-arc phase T
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Clean surface with known chemical composition – CuCr contacts for vacuum arcs

 Measurements in post-arc phase by 

1. NIR spectrometer

 Measurement in the active phase

2. pyroscopic measurements

3. 2D temperature profiles by enhanced high-speed camera techniques

4. use of current cut-off techniques

 Surface with impurities

5. characterization of cold metal transfer welding by OES and HSC



Practical examples
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Operation conditions:

 Pulsed current,  sinusoidal, 10 ms, 1- 20 kA

 Electrodes diameter 10-60 mm; maximum distance 10 mm

 Rough unpolished surface 

 Electrodes are moving from closed position (1 m/s)

 Arc initialization (“breakdown”) from bridge explosion

 Arc plasma separates the electrode from diagnostic setup

Simplification:

 Anode is fixed, cathode is moving



Measurements in post-arc phase by NIR 
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Measurements in post-arc phase by NIR 
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W strip lamp
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Measurements in active phase by pyroscope
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 Measurements parallel to surface for approximation of plasma contribution

 Plasma contribution sufficiently low

 Corrected signal gives reasonable temperature

parallel 

measuremen

t

surface 

measurement

0 2 4 6 8 10 12 14

0

5

10

15

c
u

rr
e
n
t 
(k

A
)

time (ms)

0

100

200

300

400

500

600

700 with plasma

 plasma

 corrrected

s
ig

n
a
l 
(m

V
)

1200

1400

1600

1800

2000

te
m

p
e

ra
tu

re
 (

K
)



Measurements in active phase by pyroscope
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Cu-Cr eutectic

melting temp.
1.

2.

3.

 Temperature maximum around 6 ms, i.e. after current maximum

 Accelerated temperature decay after 6 ms up to Cu-Cr eutectic melting point (at 2020 K).

 Plateau closely after current zero (occurs at different temperatures)



Measurements in active phase by pyroscope
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 Good agreement between temperatures from 

pyroscope and from NIR spectra

 Higher currents lead to higher anode surface 

temperatures
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 Lower thermal radiation for Cu 

 No continuum emission observed after CZ with NIR

 Due to comparable emissivity the anode surface 

temperatures  for Cu should be considerably lower 

than for Cu-Cr



Measurements in active phase by HSC
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Measurements in active phase by HSC
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Quantitative temperature from calibration with addition measurements, like e.g. NIR spectroscopy



Measurements in the active phase: current cut-off
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Current flow through test object VI was switched artificially to zero by means of bypath SC

Diagnostics by

 3 channel rackmount spectrometer

VIS 200-1000 nm / NIR 880-1700 nm / NIR 1.6-2.4 µm

 High-speed NIR camera 

1.5 – 1.7 µm, 6100 fps with 128 x 24 pix resolution



Measurements in the active phase: current cut-off
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 Current cut-off within Δt ~ 0.56 ms

 Temperature about 3300 K before and  about 4000 K after anode spot type 2



Measurements in the active phase: current cut-off
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 Before CZ: plasma radiation dominates emission  no information on anode temperature

 After CZ: fit to Planck curve  anode surface temperature determinable
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Measurements in the active phase: current cut-off
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 Higher anode surface temperatures and longer cooling in case of anode spot type 2

 Peaks in temperature curve from thermography (lines) due to changing emissivity during 

solidification process – in spectroscopic method (dots) the emissivity was adapted during Planck 

curve fitting
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Example 5: Surface with impurities
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High-speed camera Spectrograph

CMT welding – pulsed arc operation



Example 5: Surface with impurities
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HSC image

Material steel S235

Slit length 12 mm

Results after current cut-off

H. Schöpp, A. Sperl, R. Kozakov, G. Gött, D. Uhrlandt, G. 

Wilhelm, J. Phys. D: Appl. Phys. 45(2012) 235203
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Summary

 Various of optical methods for temperature determination is available

 In case of an arc discharge: 

“easy case” – measurements in the post-arc phase; 

“complex case” – measurements during the active phase

 Combinations of various methods increase applicability range

Outlook

 Further development is necessary for temperature measurements within the active phase

 Increase of temporal resolution

 Further results will be presented at ISDEIV2020/Padova (IT), ICEC2020/ St. Gallen (CH) and 

GD2020/Greifswald



You are kindly invited to participate in
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Thank you very much for your attention!

Dr. Sergey Gortschakow

Leibniz Institute for Plasma Science and Technology

Address: Felix-Hausdorff-Str. 2, 17489 Greifswald 

Phone: +49 - 3834 - 554 463, Fax: +49 - 3834 - 554 301

Email: sergey.gortschakow@inp-greifswald.de 

Web: www.leibniz-inp.de
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