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01. Background

Current Interruption

Arcing Phase
Dielectric 
Recovery

The dielectric recovery process is important for a successful interruption.
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01. Background

The dissipation of residual plasma starts immediately after current zero, which is important for the study of dielectric

recovery process.

Current Zero The dissipation of 

metal vapor (ms)

The dissipation of 

residual plasma (μs)

Recovery of dielectric 

strength 
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The dissipation of residual plasma

Post-arc current

The post-arc sheath forms under the effect of transient recovery voltage. Meanwhile, the post-arc current forms when

the charged particle are absorbed by the electrodes.

Current

Voltage

TRV
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01. Background

 Modeling & Simulations

 Continuous transition model (CTM)

• The derivation of this model is based on a semi-infinite

collisionless plasma.

• It is numerically instable and not so self-consist

• It requires little computational time

• The simulations with CTM agree well with the post-arc current

obtain with experiments in relatively low current interruptions
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01. Background

 Modeling & Simulations

 Hybrid Maxwell-Boltzmann model (Hybrid-MB model)

• The electron density is obtained from Maxwell-Boltzmann relation

• The ions are treated as particles

• It requires less computational time

• The influences of plasma density, the rising rate of transient

recovery voltage, metal vapor, evaporation of electrodes, polarity

effect on the post-arc sheath
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 Modeling & Simulations

 PIC model

• Both the electrons and ions are treated as particles

• It is more self-consistent and costs more computational time

than the hybrid Maxwell-Boltzmann model

• The PIC model has been applied to the study of post-arc sheath

in recent years. The influence of metal vapor on post-arc sheath

and post-arc breakdown has been studied.

Researches on post-arc current
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01. Background

 Some questions

 How do the vacuum arc influence the formation of post-arc

current still remains controversial in vacuum circuit

breakers?

 How do the residual plasma influence the post-arc sheath

expansion process are not very clear in vacuum circuit

breakers ?

Further study about post-arc current
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02. Simulations of  post-arc sheath 

1-D PIC model (both ions and electrons are treated as macro particles)
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Schematic diagram of simulation model 

 The potential and positions

 Constraint condition
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𝜆𝐷 is the Debye length

𝜔𝑝 is the plasma frequency 

𝑣𝑒 is the thermal velocity
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02. Simulations of  post-arc sheath 

Comparison of 1-D PIC model and CTM

 Results

 The sheath expansion process with CTM and PIC are similar in the initial stage

 The sheath with PIC expands faster than that with CTM after about 2 μs which is more 

close to actual value. 

 Introduction of CTM (Deduced from Poisson Equation, 

Continuity Equation and Momentum Equation)

Comparison with CTM and PIC
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02. Simulations of  post-arc sheath 

Comparison of PIC model and Hybrid-MB model

Results with  hybrid-MB model in Ref Results with PIC model

Parameters：n0=1×1019 m-3, Te= 1 eV, Ti=1800 K, TRV=1kV/μs
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 The results with two models are close
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02. Simulations of  post-arc sheath 

Introduction of ion rarefaction wave 

Sheath expansion velocity taken from PIC model

Electron density taken from PIC model

 When the sheath are stable, the plasma density of

sheath edge are 0.4 times of the plasma density of

wave front

 Two ion rarefaction waves forms in both two

electrodes and develop to the middle of the gap

 When the two rarefaction waves meets in the

middle of gap, the overall plasma density begins

to decrease and the sheath expansion velocity

begins to increase

 The ion rarefaction wave seems can be to explain

the variation of plasma in the contact gap
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02. Simulations of  post-arc sheath 

The post-arc sheath with different plasma temperatures 

 Influences of electron temperature

 The post-arc sheath expands faster to post-arc anode with higher electron temperature

 The sheath expansion process are similar in the initial stage with different electron

temperature

 The sheath expansion velocity increases earlier with higher plasma temperature
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02. Simulations of  post-arc sheath 

The post-arc sheath with different plasma temperatures 

 The influence of ion temperature

 The post-arc sheath expands faster with higher ion temperature

The variation of sheath thickness The variation of sheath expansion velocity
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02. Simulations of  post-arc sheath 

The post-arc sheath with different initial plasma drift velocities

 The influence of initial plasma drift velocity

 The sheath expands faster with higher vdrift

 The sheath expands slower with higher vdrift in the initial stage.

The variation of sheath thickness The variation of sheath expansion velocity
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02. Simulations of  post-arc sheath 

The influence of metal vapor-estimation of metal vapor
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 The variation of plasma density ranges from 1018 m-3~1022m-3

𝑇𝑠 is the contact temperature
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02. Simulations of  post-arc sheath 

The influence of metal vapor-introduction of PIC-MCC model
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 Electron and metal vapor

 Elastic collision

 Ionization collisions

 Excitation collision

 Ion and metal vapor

 Charge exchange collision

 Momentum exchange collision

collision cross section between electrons and copper atoms. 

A: elastic collisions, B: excitation for the 3d104p2P1/2 and 

3d104p2P3/2, C: excitation for the 3d94s2 2D5/2 D: ionization.

The collisions between the charged particles and metal 

vapor are dealt with Monte Carlo collision method 

(MCC)
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02. Simulations of  post-arc sheath 

The influence of metal vapor

 The post-arc sheath without initial plasma drift velocity

 The metal vapor shows small influence on the post-arc sheath when the metal vapor

density is smaller than 1020m-3

 The metal vapor slows down the post-arc sheath expansion process when the metal

vapor density is larger than 1021m-3

The variation of sheath thickness The variation of sheath expansion velocity
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02. Simulations of  post-arc sheath 

The influence of metal vapor

 The proportion of ions entering post-arc anode and total electrons β

 The metal vapor shows small influence on the β and the post-arc anode ionic current 

density when it is smaller than 1020m-3

 the β and the post-arc anode ionic current density decreases obviously when the 

metal vapor density is larger than 1021m-3

The variation of β The variation of post-arc anode ionic current density 

10
19

10
20

10
21

10
22

15

20

25

30

35

 

 


 

/%

Metal vapor density(m
-3)

0 5 10 15 20

0

20

40

60

80

100

120

140

160

180  0m
-3

 110
19

m
-3

 110
20

m
-3

 110
21

m
-3

 110
22

m
-3

 

 

P
o

st
-a

rc
 a

n
o

d
e 

io
n

 c
u

rr
en

t 
d

en
si

ty
 (

A
m

-2
)

Time(s)



22 September 2019 22

02. Simulations of  post-arc sheath 

The influence of metal vapor

The variation of sheath thickness with vdrift =1000m/s The variation of sheath thickness with 1×1022 m-3

 The post-arc sheath with initial plasma drift velocity

 The metal vapor show small influence on the post-arc sheath when it is small than

1020m-3

 The metal vapor shows dominant influence on the post-sheath when it is 1022m-3.

Meanwhile the vdrift shows no influence on the post-arc sheath
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02. Simulations of  post-arc sheath 

The plasma radial motions

PIC model with Lc=100 mm 

(ions are in blue and electrons are in red)

 2-D PIC model

 Shield, right boundary and post-arc anode are zero potential

 The plasma is distributed uniformly in the gap

 The equipotential lines in the left boundary is supposed to be parallel to the axis of 

contacts
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02. Simulations of  post-arc sheath 

The plasma radial motions

 The residual plasma diffuses

out the contact gap

 The shape of sheath edge

develops from flat to curve

 The ions would fly to 5~10 mm

away with the post-arc cathode

surface and then be absorbed
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 The dissipation of residual plasma
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03. Simulations of  post-arc current 
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 Influence of residual plasma density

 The post-arc sheath expansion process becomes slower with the increase of residual plasma density

 The β also increases with the residual plasma density

 The β approaches saturation when the residual plasma density is larger than 5×1018 m-3

Influences on the proportion of ions and total electrons entering post-arc anode (β) 

are studied as part of ions are absorbed by the post-arc anode
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03. Simulations of  post-arc current 

Influences on the post-arc current density

 Comparison with measurement and simulation

• The variation of simulation results is smaller than measurement

• The peak value and duration time of post-arc current obtained from simulation is

smaller than measurement.

Comparison with simulations and measurements

 The ions entering the post-arc

anode are neglected when

estimating the residual plasma. As

a result, the estimated residual

plasma density is small
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03. Simulations of  post-arc current 

Influences on the post-arc current density

 Comparison with simulations and measurements

• Adjusting the residual plasma density according to β

• The simulated post-arc current is more closer to measurement after adjustment.

Comparison with measurement 

and simulations

The β with different residual 

plasma density
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04. Experimental studies of post-arc current

Experimental setup

C1

CB1 L1

L3

R1 R3

C3

SP

CB2 L2

C2

Voltage

Current

PhotographHigh voltage circuit

The measuring system

High current circuit

 The post-arc current is measured by a high-resolution current-zero diagnostic system.

 The vacuum arc is recorded by a high speed camera (exposure: 2 μs， frame rate：

19000 fps)

Synthetic circuit
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04. Experimental studies of post-arc current

Experimental setup
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04. Experimental studies of post-arc current

Typical post-arc current
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Contact parameters

Abbreviations Diameter(mm) Materials Structure

30mm-Cu-butt 30 Cu Butt

58mm-Cu-butt 58 Cu Butt

58mm-Cu-TMF 58 Cu TMF

58mm-CuCr50-AMF 58 CuCr50 AMF

58mm-CuCr50-TMF 58 CuCr50 TMF

TABLE. 1 Types of different contacts

Five types of contacts are adopted to study the influence of diameter, material and

structure on the post-arc current.
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04. Experimental studies of post-arc current

The influence of diameter

 The Ipa , Q and Tpa of 30mm-Cu-butt contact is higher than that of 58mm-Cu-butt contact with the same current.

A comparison of Ipa ,Q and Tpa with different diameters 
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04. Experimental studies of post-arc current

The influence of structure

 The Ipa, Q and Tpa of 58mm-CuCr50-TMF contact is higher than that of 58mm-CuCr50-AMF contact with the

same current.

A comparison of Ipa ,Q and Tpa with different structure 
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04. Experimental studies of post-arc current

The influence of structure
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 The vacuum arc of TMF contact burns

more intensely than that of AMF contact.

 The vacuum arc of TMF contact are

more unstable.

 The more intense vacuum arc of TMF

contact results in a higher post-arc

current.

19000fps
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04. Experimental studies of post-arc current

The influence of materials

 The Ipa , Q and Tpa of the Cu contact is higher than that of CuCr50 contact with the same current.
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A comparison of Ipa ,Q and Tpa with different materials 
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04. Experimental studies of post-arc current

The influence of materials
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 Droplets occurs between the Cu contact.

 The vacuum arc of Cu contact burns

more intensely than that of CuCr50

contact.

 The more intense vacuum arc of Cu

contact also results in higher post-arc

current.
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04. Summary

 The plasma temperature, initial plasma drift velocity and plasma radial motion have effect on

the post-arc sheath expansion processes and post-arc current. The post-arc sheath expands fast

with higher plasma temperature or initial plasma drift velocity.

 The ions absorbed by the post-arc anode has a significant affect on post arc current. The

simulations indicate that the residual plasma density, the metal vapor density show relatively

obvious influence on the ions absorbed by the post-arc anode.

 The experimental results indicates that the vacuum arc modes can influence the post-arc current.

The post-arc current value and duration time increase when the vacuum arcs more intense.
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