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Motivations

CONTEXT :

Intense electron emis-

sion from many as-

perities in vacuum

Dark current leakage

and plasma discharge

in high voltage devices

Need for understanding the physical phenomena at stake

PART OF THE ANSWER : SIMULATIONS

2D axi-symmetric simulation :

� small computation time

� easier to process data

� isolated asperity

3D simulation :

� long computation time

� asperities proximity

� closer to reality
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Simulation scope

We want to study tips interaction

� Reduce interaction to only two tips.

� Use simpli�ed tip pro�le : ellipsoid.

d
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D
E

simpli�cation

Ti electrode surface aspect after

having arced [Antoine,2012]

(H1,R1) (H2,R2)

ellipsoidal tips

Scheme of a typical con�guration

Highly simpli�ed but can't use 2D axial symmetry anymore : need for 3D.
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Asperities interactions

Tips proximity leads to two interaction types :

Electrostatic screening

� has a major e�ect on electron

emission

� is well studied

Thermal coupling

� hasn't been much explored

� what magnitude ?
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1. Modeling background

2. Procedure

3. Results

4. Conclusions and outlooks



Simulation steps

Vcat Cathode
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Dgap
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Emitted current Je(E ,T ,φ)
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solved with COMSOL

home-made model solved in FORTRAN

Electron emission
numerical 1D WKB model

- at each time step -

Electric �eld
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Temperature
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Boundary conditions

Simulation domain

vacuum

V =Vcat

E = Van−Vcat
Dgap

=E0

~E ·~n= 0~E ·~n= 0

cathode

~φ ·~n=ΦN

~j ·~n =Je
~φ ·~n= 0
~j ·~n= 0

~φ ·~n= 0
~j ·~n= 0

T = 300K and V =Vcat

The electric �eld equa-

tion is solved in va-

cuum.

Our electron emission

model is solved at the

tips surfaces.

Heat and current equa-

tions are solved toge-

ther in the cathode.
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Parameters range and example

Ellipsoidal tips, f =H/R ≡ aspect ratio, βa ≡ apex �eld enhancement factor

f = 1, βa = 3 f = 2, βa ∼ 6 f = 5, βa ∼ 17 f = 10, βa ∼ 50

H and R both range from 1 to 10 µm

Example for two identical tips :

H = 10µm, R = 1µm and d = 3µm

Ï titanium tips :

Φ= 4.3eV (homogenous)

Ï applied voltage :

∆V = 32kV on Dgap = 200µm

⇒E0 = 1.6×108V /m
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Study method

Je(E ,300K ) Je(E ,T ) current Ieq

�eld E temperature T temperature Teq

E screening T coupling

time

evolution
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STATIC

electrostatics

TIME DEP.

heat/current

EQUILIBRIUM

: variables

: interactions

proximity
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Reference with only one tip

one tip alone (2D axial)

2D sectional view showing isopotentials in

vacuum and isothermals inside the cathode

×
×

E screening

T coupling

Tip parameters :

H = 10µm, R = 10µm

φ= 4.3eV

E0 = 1.87V /nm, β= 3

Reference current at equilibrium :

Ieq = 3.49 A

Reference maximum temperature at

equilibrium :

Tmax
eq = 1897 K
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Two tips with thermal coupling only

two tips at d=3R (3D)

2D sectional view showing isopotentials in

vacuum

× E screening

X T coupling

d = 3R, identical tips

φ= 4.3eV

E0 = 1.87V /nm, β= 3

E�ect of thermal coupling only

Current per tip at equilibrium :

Ieq = 3.72 A

Maximum temperature at

equilibrium :

Tmax
eq = 2011 K

⇒ variation of +6.6% in current

and +6.0% in temperature with

respect to reference.
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Two tips with electrostatic screening only

two tips at d=3R (3D)

2D sectional view showing isopotentials in

vacuum and isothermals inside the cathode

X
×

E screening

T coupling

d = 3R,identical tips

φ= 4.3eV

E0 = 1.87V /nm, β= 3

E�ect of electrostatic screening

only

Current per tip at equilibrium :

Ieq = 1.93 A

Maximum temperature at

equilibrium :

Tmax
eq = 1429 K

⇒ variation of −50% in current

and −25% in temperature with

respect to reference.
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Results with two close tips

two tips at d=3R (3D)

2D sectional view showing isopotentials in

vacuum and isothermals inside the cathode

X
X

E screening

T coupling

d = 3R, identical tips

φ= 4.3eV

E0 = 1.87V /nm, β= 3

E�ect with both interactions

Current per tip at equilibrium :

Ieq = 2.00 A

Maximum temperature at

equilibrium :

Tmax
eq = 1471 K

⇒ variation of −43% in current

and −22% in temperature with

respect to reference
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Recap

×
×

T coupling

E screening

3.49A (ref.)

1897K (ref.)

isolated tip

X
×

T coupling

E screening

3.72A (+6.6%)

2011K (+6.0%)

close tips with an isolated interaction

×
X

T coupling

E screening

1.93A (−50%)

1429K (−25%)

X
X

T coupling

E screening

2.00A (−43%)

1471K (−22%)

close tips
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Conclusions and outlooks

To sum up :

� Tips proximity increases both thermal and electrostatic interactions.

� Thermal coupling can have a noticeable e�ect in speci�c

con�gurations (large asperities, high temperature).

� Electrostatic screening reduces thermal coupling e�ect and clearly

makes it a second order phenomenon in terms of magnitude

compared to screening itself.

What's next :

� Explore with refractory metals and other geometries.

� Explore with more tips (ex : tips array).

� Use these results to propose a simpli�ed approach to simulate

complex 3D con�gurations (paper to come).
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Parameters exploration
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Visualisation of isolated thermal coupling e�ect on current versus distance at breaking

potential for di�erent aspect ratios
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Gross evaluation of mesh related error

For a tip alone (H = 10µm, R = 1µm, E0 = 1.6×108V /m with titanium),

we compare the results of a 2D axi-symetric ultra �nely meshed result to

an equivalent in 3D with di�erent meshes.

The reference current is : I2D(300K )= 11.177 mA

mesh1 : gross

(3.5×105 elements)

σ∗
E = 2.44%

I3D(300K )=
9.3577 mA

variation of -16.3%

mesh2 : acceptable

(4.6×105 éléments)

σ∗
E = 0.641%

I3D(300K )=
10.879 mA

variation of -2.67%

mesh3 : usual

(1.1×106 elements)

σ∗
E = 0.167%

I3D(300K )=
10.999 mA

variation of -1.59%

⇒ Mesh related error due to meshing will typically be about 1%



Field electron emission model

Code input : initial temperature T and linear E�eld E

f
(ε

,T
) z

E (z ,E )

ε

Métal Vide

1

2

3

ε C
ε F

0

Je(E ,T )

1 from T → Sommerfeld

Energy Distribution

Function of electrons :

f (ε,T )

2 from E → Linear electric

�eld + image charge

correction : E (z ,E )

3 Numerical computation of

current density† : Je(E ,T )

†. where the transparency coe�cient D is obtained through numerical solving of 1D

Schrödinger equation with WKB approximation and numerical compuation of the

elliptic integral functions.



Heat sources : Joule

Current in the

tip volume

Joule heating :

pJ = ρj2

� can only heat

� heat is dissipated in volume : [pJ ]=W .m−3



Heat sources : Nottingham

Electron emission

at the tip apex
Nottingham �ux

vacuum

tip apex

tip bulk

� � � �

�
�

�
�

�
�

�
�

�
�

�
emitted electrons :

mean energy = 〈ε〉em

surface electrons

replacement electrons :

〈ε〉rep = µ(T ) ∼ εF

Average energy change for

each emitted electron :

WN (T )= 〈ε〉rep−〈ε〉em(T )

⇒ Heat �ux : ΦN(E ,T )= Je(E ,T )

−e WN(T )

� can heat or cool (WN can be positive or negative)

� heat �ux from the emission surface : [ΦN ]=W .m−2



Heat sources : Nottingham

Theoretical view of Nottingham cooling or heating

cooling emission

heating emission

z
ε

E (z ,E )

Métal Vide

WN > 0

WN < 0

ε C
ε F

0
f
(ε

,T
)

WN = εF −ε
� heat when emitting cold electrons

� cool when emitting hot electrons



heat evolution toward equilibrium
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arbitrary example

(1)

(2)

(3)

at �nal time tf :

(1) : Nottingham heating︷ ︸︸ ︷Ï
Sext

ΦN(tf ) ·dS +

(2) : Joule heating︷ ︸︸ ︷Ñ
Vtot

pJ(tf )dV =

(3) : output heat �ux︷ ︸︸ ︷Ï
Sint

q(tf ) ·dS (1)
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