3D Modeling of field electron emission from micro-structured surfaces

Exploration of thermal interaction between intensively emitting close tips

<u>Darius Mofakhami</u>^{1,2}, Ph. Dessante¹, R. Landfried¹, Ph. Testé¹, T. Minea² and B. Seznec²

Padova, 8th MeVArc Workshop, 16/09/2019

¹Génie électrique et électronique de Paris:

²Laboratoire de Physique des Gaz et des Plasmas:

Motivations

CONTEXT:

Intense electron emission from many asperities in vacuum

Dark current leakage and plasma discharge in high voltage devices

Need for understanding the physical phenomena at stake

PART OF THE ANSWER: SIMULATIONS

2D axi-symmetric simulation :

- small computation time
- easier to process data
- isolated asperity

3D simulation:

- long computation time
- asperities proximity
- closer to reality

Simulation scope

We want to study tips interaction

- Reduce interaction to only two tips.
- Use simplified tip profile : ellipsoid.

Ti electrode surface aspect after having arced [Antoine,2012]

Scheme of a typical configuration

Highly simplified but can't use 2D axial symmetry anymore: need for 3D.

Asperities interactions

Tips proximity leads to two interaction types :

Electrostatic screening has a major effect on electron emission is well studied Isopotential curves

1. Modeling background

2. Procedure

3. Results

4. Conclusions and outlooks

Simulation steps

Boundary conditions

Simulation domain

The electric field equation is solved in vacuum.

Our electron emission } model is solved at the | tips surfaces.

Heat and current equations are solved together in the cathode.

Parameters range and example

Ellipsoidal tips, $f = H/R \equiv$ aspect ratio, $\beta_a \equiv$ apex field enhancement factor

$$\beta = 1, \ \beta_a = 3$$

$$f=2$$
, $\beta_a\sim 6$

$$f=5$$
, $\beta_a \sim 17$

$$f = 1, \ \beta_a = 3$$
 $f = 2, \ \beta_a \sim 6$ $f = 5, \ \beta_a \sim 17$ $f = 10, \ \beta_a \sim 50$

H and R both range from 1 to 10 μm

Example for two identical tips:

$$H = 10 \mu m$$
, $R = 1 \mu m$ and $d = 3 \mu m$

- ► titanium tips :
- $\Phi = 4.3 eV$ (homogenous)
- ▶ applied voltage :

$$\Delta V = 32kV$$
 on $D_{gap} = 200 \mu m$

1. Modeling background

2. Procedure

3. Results

4. Conclusions and outlooks

1. Modeling background

2. Procedure

3. Results

4. Conclusions and outlooks

Reference with only one tip

2D sectional view showing isopotentials in vacuum and isothermals inside the cathode

Tip parameters :

$$H = 10 \mu m, R = 10 \mu m$$

 $\phi = 4.3 eV$
 $E_0 = 1.87 V / nm, \beta = 3$

Reference current at equilibrium :

$$I_{eq} = 3.49 A$$

Reference maximum temperature at equilibrium :

$$T_{eq}^{max} = 1897 \ K$$

2D sectional view showing isopotentials in vacuum

$$d=3R$$
, identical tips $\phi=4.3\,eV$ $E_0=1.87\,V/nm$, $\beta=3$

2D sectional view showing isopotentials in vacuum

$$d=3R$$
, identical tips $\phi=4.3\,eV$ $E_0=1.87\,V/nm$, $\beta=3$

2D sectional view showing isothermals inside the cathode

d = 3R, identical tips $\phi = 4.3 eV$ $E_0 = 1.87 V/nm$, $\beta = 3$

2D sectional view showing isothermals inside the cathode

$$d=3R$$
, identical tips $\phi=4.3\,eV$ $E_0=1.87\,V/nm$, $\beta=3$

Effect of thermal coupling only Current *per tip* at equilibrium :

$$I_{eq} = 3.72 A$$

Maximum temperature at equilibrium :

$$T_{eq}^{max} = 2011 \ K$$

 \Rightarrow variation of +6.6% in current and +6.0% in temperature with respect to reference.

Two tips with electrostatic screening only

2D sectional view showing isopotentials in vacuum and isothermals inside the cathode

$$d=3R$$
, identical tips $\phi=4.3\,eV$ $E_0=1.87\,V/nm,\ \beta=3$

Effect of electrostatic screening only

Current per tip at equilibrium :

$$I_{eq} = 1.93 A$$

Maximum temperature at equilibrium :

$$T_{eq}^{max} = 1429 \ K$$

 \Rightarrow variation of -50% in current and -25% in temperature with respect to reference.

Results with two close tips

2D sectional view showing isopotentials in vacuum and isothermals inside the cathode

$$d=3R$$
, identical tips $\phi=4.3\,eV$ $E_0=1.87\,V/nm$, $\beta=3$

Effect with both interactions

Current per tip at equilibrium :

$$I_{eq} = 2.00 A$$

Maximum temperature at equilibrium :

$$T_{eq}^{max} = 1471 \ K$$

 \Rightarrow variation of -43% in current and -22% in temperature with respect to reference

Recap

close tips with an isolated interaction

X T coupling 3.49 A (ref.) 1897K (ref.)

Modeling background

2. Procedure

3. Results

4. Conclusions and outlooks

Conclusions and outlooks

To sum up:

- Tips proximity increases both thermal and electrostatic interactions.
- Thermal coupling can have a noticeable effect in specific configurations (large asperities, high temperature).
- Electrostatic screening reduces thermal coupling effect and clearly makes it a second order phenomenon in terms of magnitude compared to screening itself.

What's next:

- Explore with refractory metals and other geometries.
- Explore with more tips (ex : tips array).
- Use these results to propose a simplified approach to simulate complex 3D configurations (paper to come).

5. Back up slides

Parameters exploration

Parameters exploration

Visualisation of isolated thermal coupling effect on temperature versus distance at breaking potential for different aspect ratios

Gross evaluation of mesh related error

For a tip alone ($H=10\mu m$, $R=1\mu m$, $E_0=1.6\times 10^8\,V/m$ with titanium), we compare the results of a 2D axi-symetric ultra finely meshed result to an equivalent in 3D with different meshes.

The reference current is : $I_{2D}(300K) = 11.177 \text{ mA}$

mesh1 : gross $(3.5 \times 10^5 \text{ elements})$

$$\sigma_E^* = 2.44\%$$

$$I_{3D}(300K) =$$

9.3577 mA
variation of -16.3%

mesh2 : acceptable $(4.6 \times 10^5 \text{ éléments})$

$$\sigma_E^*=0.641\%$$

$$I_{3D}(300K) =$$

10.879 mA
variation of -2.67%

 $\begin{array}{l} \text{mesh3} : \text{usual} \\ (1.1 \times 10^6 \text{ elements}) \end{array}$

$$\sigma_E^*=0.167\%$$

$$I_{3D}(300K) =$$

10.999 mA
variation of -1.59%

Field electron emission model

Code input : initial temperature T and linear Efield E

- from T o Sommerfeld Energy Distribution Function of electrons : $f(\varepsilon, T)$
- from $E \to \text{Linear electric}$ field + image charge correction : $\mathscr{E}(z, E)$
- Numerical computation of current density $J_e(E, T)$

 \dagger . where the transparency coefficient D is obtained through numerical solving of 1D Schrödinger equation with WKB approximation and numerical computation of the elliptic integral functions.

Heat sources: Joule

Joule heating: $p_J = \rho j^2$

$$p_J = \rho j^2$$

- can only heat
- heat is dissipated in volume : $[p_J] = W.m^{-3}$

Heat sources: Nottingham

- can heat or cool $(W_N \text{ can be positive or negative})$
- heat flux from the emission surface : $[\Phi_N] = W.m^{-2}$

Heat sources: Nottingham

Theoretical view of Nottingham cooling or heating

$$W_N = \epsilon_F - \epsilon$$

- heat when emitting cold electrons
- cool when emitting hot electrons

heat evolution toward equilibrium

at final time t_f :

(1) : Nottingham heating (2) : Joule heating (3) : output heat flux
$$\iint_{S_{ext}} \Phi_N(t_f) \cdot \mathbf{dS} + \iiint_{V_{\text{tot}}} p_J(t_f) dV = \iint_{S_{int}} \mathbf{q}(t_f) \cdot \mathbf{dS} \tag{1}$$