

Vacuum breakdown voltage distributions between different contact arrangements and materials

Erik D. Taylor, Jörg Genzmer, Andreas Schulz Siemens AG, Berlin, Germany

Unrestricted © Siemens AG 2019 siemens.com

Overview

- Vacuum interrupters (VI's) have standard requirements to withstand high voltage pulses.
- Codified in BIL (U_p) voltage test.
- Detailed studies often use up-down method.
- Explored always breakdown method.
- Provided similar results, and much quicker.
- Comparison to linear collider breakdown models.
- Comparison of field emission from VI's/macroscopic contacts to microscopic field emission arrays (FEA's).
- Can connect VI's, linear colliders, and FEA's.

Page 2 Taylor / EM MS R&D OC 3

Vacuum interrupter (VI) design

Typical VI layout

Range of VI's for different applications

Fixed and floating shield designs

Janssen, et al., ISDEIV 2018

Vacuum interrupter applications

SIEMENS

Ingenuity for life

BIL voltage test (Up) and test methods

Standard BIL voltage 1.2µs/50µs pulse

Typical BIL performance

Taylor, Slade, ISDEIV 2006

Up-down voltage test

Always breakdown test

Breakdown data for VI's

Scatter of breakdown voltages (7mm) – limited conditioning

Cumulative breakdown distributions for different VI's

* Taylor, Slade, ISDEIV 2006

Fitting data to Weibull distributions

	Weibull	parameter	
data source	shape	scale (kV)	50% (kV)
floating shield 5mm	16.2	124	121
floating shield 7mm	11.8	156	151
fixed shield positive	10.2	189	182
fixed shield negative	12.1	153	149
Ref. [2] Cu-W 3mm	7.1	128	122
Ref. [2] Cu-W 5mm	9.0	185	178
Ref. [2] Cu-Cr 5mm	10.2	105	101

Empirical breakdown voltage models

$$F(x) = 1 - e^{-(x/\lambda)^k}$$
Scale parameter

$$BDR \sim E_a^{\gamma}$$
 Electric field magnitude

$$F(x) = (x/\lambda)^{\gamma}$$

$$\lim_{x/\lambda \to 0} \frac{1 - e^{-(x/\lambda)^k}}{(x/\lambda)^{\gamma}} = \frac{1 - (1 - (x/\lambda)^k)}{(x/\lambda)^{\gamma}} = 1$$

$$k = \gamma$$

Weibull cumulative breakdown distribution

Breakdown rate for linear colliders *

Possible extension of collider model

Models converge as voltage decreases -

when γ is equal to shape parameter

Comparison of empirical models and data

Example of VI data and models from previous slide

50% breakdown voltage (data/models) vs. Ref. [1]

Comparison to other extreme of dimensions - FEA

Ingenuity for life

Comparison to F-N equation

Summary

- Can connect results from vacuum interrupters, linear colliders, and microscopic FEA's.
- Always breakdown method quickly provided breakdown data.
 - Limited / no signs of (de-)conditioning during the test.
- Data generally fits Weibull distribution and extension of linear collider model when using the shape parameter.
 - Both VI's and colliders have very steep shape parameters.
 - VI's have values from 9-16, compared to ~30 for colliders.
 - But VI data does suggest a steeper value below a few percent.
 - Work continuing at Padua.
- Similar field emission behavior in VI's and FEA's, despite very large differences in dimensions, structure, and voltages.
- Meaningful breakdown model would need to include the variation in the breakdown voltage as well as rare but observed breakdowns at much higher than expected voltages.

Page 12 Taylor / EM MS R&D OC 3

Contact information

Dr. Erik Taylor

Senior Key Expert Switching Technology SI DS R&D OC 3

Rohrdamm 88 13629 Berlin GERMANY

Mobile: +49 172 268 8421

E-mail:

erik-d.taylor@siemens.com

siemens.com