

Surface coatings for arc prevention between plasma facing components

L. Cordaro, R. Cavazzana, M. Zuin, G. Berton, S. Peruzzo

8th International Workshop on Mechanisms of Vacuum Arcs

17/09/2019

Fusion plasma magnetic confinement

- Φ toroidal direction
- Θ poloidal direction
- radial direction
- R₀ major radius
 - minor radius

The combination of poloidal and toroidal field components results in a helical magnetic field, necessary for a stable confinement of the plasma in a toroidal configuration.

In Tokamak and Reversed Field Pinch (RFP) the poloidal magnetic field is mainly produced by a toroidal current (plasma current) flowing into the plasma itself

How is plasma current produced and sustained in tokamak and RFP?

- a time-varying current in the central solenoid produces a flux variation that induces a toroidal current.
- the plasma constitutes the secondary circuit of a transformer, the primary coils representing the primary circuit.
 - The current heats plasma by Ohmic heating

RFX-mod

- Magnetic confinement of fusion plasmas
- Largest Reversed Field Pinch (RFP)
- Other configurations accessible: Tokamak, Ulq
- $R_0 = 2m$; a = 0.459 m
- Plasma current up to 2 MA
- Advanced system for active control of MHD instabilities
- Self-organized helical plasma

Lorenzini R. et al, Nature Physics 5, 570-574 (2009)

RFX-mod → RFX-mod2

- The upgrade of the RFX-mod device is presently under design
- The enhancement of the 'plasma-shell proximity' is required Main changes of 'load assembly' will involve:
- First Wall (FW)

- made of graphite tiles
- withstand high thermal loads

Vacuum Vessel (VV)

- 30 mm thick Inconel
- Passive Stabilizing Shell (PSS)
 - 3 mm thick copper
 - passive control of magnetic instabilities
 - allows penetration of externally induced magnetic fields
- Toroidal Support Structure (TSS) 47 mm stainless steel
 - mechanical support to the enclosed structures

Main modifications:

- Removal of the current Vacuum Vessel
- fastening of new first wall to the PSS
- Transfer of vacuum barrier at the TSS:

Vacuum Tight Support Structure (VTSS)

Simulation of RFX-mod fast termination

Simulation of RFX-mod2 fast termination

In-vacuum passive stabilizing shell design

- An overlap spanning ~ 30° in toroidal direction is necessary to minimize magnetic error fields
 - 2 mm overlap distance

- 3 mm thick copper shell
- Two gaps (electrical discontinuity) to allow penetration of externally induced magnetic fields
- Gaps avoid loop currents in both directions

Shell design

Worst case: arching at the shell

- ~ 1 MJ stored energy can be delivered to the arc in the worst scenario!
- 700kA current could circulate in the PSS
- A cage of supporting rings and steel plates is designed to withstand mechanical forces
- Protection necessary to avoid damage caused by large localized thermal loads

Arching at shell: possible solution

Shell cover with insulating material

Arc formation prevention

- Thin insulating material due to geometrical constraints
- High vacuum compatible
- Low Z impurities
- Thermo-Mechanical constraints

Multiple vertical gaps

- Reduction of electric field at each gap
- Reduction of simultaneous arcing probability
- Geometrical constraints (diagnostic access, cables, mechanical structures,...)
- Costs

Alumina coating

Aluminum Oxide Al₂O₃

- Ceramic
- High thermal conductivity
- Poor electrical conductivity
- Hard, wear-resistant
- Vacuum compatible

Coating Method:

Atmospheric Thermal Spraying

- Semi-molten or solid particles are deposited on substrate
- Spraying technique generates a 'stream' of such particles
- Coating is generated if particles can plastically deform at impact
- Several techniques, differing for:
 - Temperature

- Particle velocity

- Deposition rate

- Bond strength

- Materials

- Coating treatment

Plasma Spray

- Plasma expands in air, producing a jet
 - Powder injected into the jet
- Particles are melted and accelerated in jet
- Particles impact the substrate and form coating
 - Easy tool handling
 - Continuous process
 - Substrate heating

Detonation Gun Spray

- Powder injected into the barrel
- Oxygen and acetylene ignited by a spark
- Detonation wave accelerates the particles
- Particles impact the substrate and form coating
 - Poor handling
- Discontinuous process (frequency up to 15 Hz)
 - Low porosity coating

Insulation test: samples

- 3mm thick copper plates covered with alumina
- 100x30 mm²
- 120x120 mm²
- 100:150 µm alumina coating

Tests to be performed:

- Insulation tests in air
- Insulation tests in vacuum with a weakly ionized plasma
 - Mechanical stress
 - Thermal stress

Insulation test in air

CONSORZIO RFX
Ricerca Formazione Innovazione

- Insulation tests carried out in by means of Hioki High Voltage Insulation Tester IR3455
- Samples kept at temperature T> 75 °C to reduce humidity

Electrical discharges identified V ≥ 3.5 kV

- The presence of RFX-mod2 edge plasma ($n_e \approx 10^{16} \div 10^{18}$ m⁻³, $T_e \approx$ few eV) can create the appropriate conditions for dangerous arc formation
- It is crucial to know what happens with pulsed voltages in the kV range in a weakly ionized plasma

- The presence of RFX-mod2 edge plasma ($n_e \approx 10^{16} \div 10^{18}$ m⁻³, $T_e \approx$ few eV) can create the appropriate conditions for dangerous arc formation
- It is crucial to know what happens with pulsed voltages in the kV range in a weakly ionized plasma

Experimental setup

- Weak plasma
 - Helium
- $n_e \sim 10^{15} \text{ m-3}$

- Floating electrodes (sample and a copper pin)
- Biased by a small capacitor bank (0.3÷2 μF)
 - Voltage pulses 200 ms long
 - 1Hz repetion rate
 - Sample-pin distance in range 0 4 mm

 Langmuir probe negatively biased to collect ion saturation current

OBSERVATIONS

- In-chamber n_e (~ 10^{15} m⁻³) << edge RFX-mod2 n_e (~ $10^{16} \div 10^{18}$ m⁻³)
 - Careful coverage of the plate bare copper is required (to avoid electrical arcs even at low voltage)
- Electrical conditioning of conductive structures faced to plasma is necessary
 - R. Cavazzana, Electrode conditioning for prevention of DC arc formation in presence of cold plasma background, Poster session

Conclusions

- The upgrade of the RFX-mod device is under design
- In the case of rapid terminations, damaging electric arcs could occur on the passive stabilization shell
- The presence of tenuous plasma can create the appropriate conditions for dangerous arc formation even at relatively low voltage
- The feasibility of coating material such as alumina is being evaluated
- First positive insulation tests performed
- D-Gun coating is going to be evaluated
- Thermo-mechanical stress tests are going to be performed

Spare slide

Spare slide

Capacitor bank discharge

