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i s The faceting as seen on SEM images
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‘*/Aﬁ"" Fujita et al.: Faceting of a single

e crystal W tip

e Similar experiment setup - results shown are with static T=2300 K
Lower temperatures behaved differently, omitting D-F.
e Single crystal tip.

. (b) Change in the

FE pattern

FIG. 5. (Color online) Summary of the evolution of the tip shape in the remolding process at the temperature 7,=2300 K. The FE
patterns (second row), the emitter tip shape models (third row), and the SEM images of the tips at selected stages (fourth row) are given in

the order of the increasing remolding voltage.

Fujita et al., “Mechanism of surface-tension reduction by electric-field application: Shape changes in single-crystal field emitters under thermal-field treatment”, Phys. Rev. 75, 2007
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kg, Reconstruction of process timeline
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 The maximum temperature reached is 2689.7 K,

e occurring 1.26 ps after the laser impulse,
e just after the average electronic
temperature peaks,
 Temperatures above 2500 K exist for 1.6 ps
within 5nm of the crystal surface
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Electronic and lattice temperature behaviour

due to

TTM — dynamic heat deposition

e laser + emission currents

e energy deposition+TTM+resistive
heating+Nottingham effect
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e, TTM results — surface maps from laser
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* Elastic deformation of material, simulation of large strains:
* Anisotropic bulk material model

* Surface stess is calculated using thin layer aproximation in boundary
layers

* Surface parameters are isotropic but crystal face dependent

* Crystal faces detected algorithmically:
* Ability to simulate arbitrary shapes
* Only crystal orientation is needed to intialize the simulation

 |Initial surface stress and elastic parameters of surface from
MD simulations

* Fully copled surface and bulk stress model

Bulk model S=2C:eb

1
5 . E== (FTF = 1)
Surface model Ty = T + Sijri€n 2
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m!u;a Surface stress using FEM

Crystal face detection

— Model geometry
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Crystal plane dependent surface
properties

The surface effects important in range
~6-10 nm

* Corrections for surface stress (surface
tension)

* Model complexity improved towards
nonlocal simulations

» Strongest/weakest nanostructure estimation
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Plastic deformation
e Accurate limits to be determined

* Dependence from grain size, average
dislocation length and plastic deformation
activation volume

* More complex model needed to account
microstructure effects, dislocation densities
etc.
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i 3 Utilization of the surface stress model
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Possible to combine TTM + Atomistic stresses + system
energy minimization

* Similar to KMC without it’s uniform temp. requirement

* Mechanics always in steady state - . . 0
* Alsoin every TTM time step -

* Pseudo time based optimization conducts shape changes

Different void geometries from kMC
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Topology optimization

* Main principles in current implementation:

* Minimize a functional with respect to some constraints
* Constraints are PDE-s (stress calculations) & volume

* Based on Lagrangian formalism => the geometry is
deformed
e Strain energy density is minimized

e Euler-Lagrange equation is used to find extrema of the
functional
* Asaresult gives surface velocity for geometry deformation algorithm

e ALE type Moving mesh approach is used to deform geometry

* Volume is constrained by using approach of Lagrange
multipliers
* LM is average surface velocity

* In theory, volume is conserved, in practice volume conservation is
differential & allows drifts

* Optimization runs using pseudo-time for iterative stepping

* Derivatives are analytically determined in background
theory ... remeshing is possible 111!
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1 ¢ Core equations of the implementation

The optimization problem:

* Small strain mechanics

1
Minimize: | = j—ETDEd.Q
* Deformation relative to 5 2

current shape, not to initial V- (De) = f
* Laplace equation for E jldﬂ _
e Steady state heat equation )
: Method of L Itipli
° ALE for deform|ng the
1
geometry v, = — (E e"De + 1 + )/Ic)
* Lapla.ce mesh smoothing Volume change in pseudo time required to be zero:
algorithm v
Jr1ds

Z. Liu et al. Struct. Multidisc. Optim. (2005)
V. Zadin et. al J. Power Sources (2013)
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without field

Time=0 s Surface: von Mises stress, Gauss-point evaluation (GPa)
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Surface evolution

e {11 1}surfaces form due to energy minimization without field
« Correspond to minimal surface energy structures
e Good agreement with kMC

* Strong field dependence at flattening of the tip in case with the field
e 700 MV/m still converged towards no-field case
* 900 MV/m showed very fast flattening

e 1200 MV/m ... 1500 MV/m - shape changes were inhibited
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il 2 Influence of the temperature — no field ‘

Time=0 s Surface: von Mises stress, Gauss-point evaluation (GPa)
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21l 2 Conclusions

* Polycrystalline tip — thermal stress due to grain misalignment?

Surface layer melting?
* Very fast convergence in case of E only

* Tinfluence very strong
* Over estimation of thermal conductivity? Too small tip?
* Possible tests with artificially reduced thermal conductivity
* Possible test with surface layer having lower thermal conductivity

Possible Cu effect (FCC crystal behavior)

Possible fatigue effect — cycled loading

* E reduces surface stress effects .... T tends to behave uniformly .....
* Nofield, no T may be more correct representation of T effects
* Perhaps optimization with T tries to converge to spherical shape
* Eand no E interplay provides ridges
* T acts only as means for speeding up surface diffusion?

Different behavior in all cases — without field, with field & with heating
* Interplay of combination of phenomena will lead to selective faceting of the surface
* Balancing between stresses by electric field, surface and thermal effects are needed
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