COMSOL Simulation of the Free Electrons in a Surface Flashover

Xiaoli Guo

MeVArc 2019

The background theory

1. Parameters in a flashover.

Many parameters can influence the flashover voltage of insulators in vacuum, such as:

- Material
- Geometry
- Surface finish
- Attachments to electrodes
- For AC HV
 - the applied voltage waveform
 - duration
 - single pulse or repetitive
- The process history
- Operating environment
- Previous applications of voltage

This simulation is only about the geometry of the insulators.

(H. Craig Miller, 2015)

2. The SEEA(Secondary electron emission avalanche) theory

- a. Electrons are emitted from the triple point of the cathode/negative electrode.
- Electrons collide the surface of the insulator and more secondary electrons are then emitted.
- c. Step b. happens repeatedly and the total amount of electrons multiplies.
- d. This avalanche finally causes a discharge between two electrodes.

The flashover simulation in COMSOL

- 3. The basics of the simulation(1)
 - Software
 - COMSOL Multiphysics 5.4
 - Modules of COMSOL used
 - AC\DC
 - Charged particle tracing
 - Judging criteria
 - The Multiplication factor of electrons from the cathode to the anode(negative wafer to the positive wafer).

3. The basics of the simulation(2)

Geometry

- -The simulation is done in 2D regime
- -Top and bottom boundaries are GND wafer and positive HV wafer.(Distance 1mm)
- -A sphere near the triple point is set to represent a particle
- -Several typical insulator shapes are considered

Voltage setting

- -Top electrode 0V
- -Bottom electrode 10kV

4. Different shapes of the insulator surface

5. Trajectories and field simulation results

Insulator Geometries		Electric field strength at the sphere top / V/m	Number of electron on the anode	Multiplication factor
A. Flat Surface	0.93E+07	3.24E+07	38	1.9
B. Trapezoid	1.92E+07	4.45E+07	>10000	>5000
C. Under-cut	0.39E+07	2.43E+07	20	1
D. Single step	1.10E+07	3.68E+07	0	0

6. Conclusions

- Different geometries of insulator surface have significant influence on the SEEA of a surface flash over.
- A dielectric particle can enhance the electric field by at least 2 times in the simulation.
- The single step insulator with proper width is easy to manufacture and can block the SE emission avalanche.
- The insulator with trapezoid surface in case B, has very high chance to trigger an secondary electron emission avalanche.

