

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Dynamic coupling between particle-in-cell and atomistic simulations

Mihkel Veske, <u>Andreas Kyritsakis</u>, Kyrre N. Sjobaek, V. Zadin, A. Aabloo and F. Djurabekova

Helsinki Institute of Physics and Department of Physics University of Helsinki Finland

- The plasma onset stage of vacuum BD and its importance for BD mitigation
- Two schools of thought:

"explosive emission" vs "thermal evaporation"

- Concurrent ED-MD simulations on nanotips
- The thermal runaway process
- Integrating with PIC simulations
- Results
- Conclusions

Vacuum breakdown stages

Sharp tips on surface, field enhancement, electron emission

Ionization, plasma formation-expansion, high current, voltage collapse

Importance of stages 2,3: power flow limits

Can we use this as a design way to
mitigate Vacuum breakdown?
First we need to understand it
What is the limiting factor for BD
initiation?

• What makes the available EM power Soft Cu electrode, Calculated S_c @ 100 MHz Anton Saressato be sufficient nipasonaccases, while

insufficient in other?

Vacuum breakdown stages

Sharp tips on surface, field enhancement, electron emission

Ionization, plasma formation-expansion, high current, voltage collapse

Plasma ignition: schools of thought

Explosive emission (ECTON model):

- ✓ Tip heats up by Joule heating (FE current)
- ✓The heat accumulates while the shape stays constant
- ✓ Extreme
 - temperatures
- ✓ Direct phase transition from metal to plasma

Thermal runaway evaporation:

- ✓ Tip heats by Nottingham & Joule and melts on top
- ✓ Maxwell stress pulls and sharpens it
- ✓ Molten material at high temperatures emits vapor
- ✓Vapor ionizes by e collisions (and field ionization)
- ✓ Ions sputter out more vapor✓ Plasma gradually builds up

Densities, time = 0.000 [ns]

H. Timko et. al., Contrib. Plasma. Phys. 4, 229 (2015). Animation by K. Sjobaek

• Plasma can ignite emitter assuming a small tip that:

 Emits e with an enhancement β>35

 Releases >15 evaporated neutrals per 1000 e.

• What is the origin of those neutrals?

 What are the mechanisms in Stage 2 that produce the necessary vapor?

Hybrid MD-ED-Emission-Heat

Thermal runaway: complex process that involves various phenomena that have to be taken into account in the calculations

$t = 2.0 \, ps$ T [K] 6000 300 (c) 2017 University of Helsink

Thermal runaway

- $E_{appl}=0.8 GV/m$
- Mean evaporation rate (first to last evaporation events) $r_{Cu} = 75 \pm 11$ atoms/ps
- Mean current $r_e = 2807 \pm 153 \text{ e/ps}$
- $r_{Cu/e} = 0.025 \pm 0.003$ atoms/e
- The assumption of the ArcPIC simulations (0.015 atoms/e) was not unrealistic at all

A. Kyritsakis et. al, J. Phys. D: Appl. Phys. 51, 225203 (2018)

Problem 1: Space-charge limited Field Emission in 3D

- In reality, no field emitter is flat and the 1D model is inadequate
- Standard treatment: Equivalent Planar Diode (EPD) model to correct for the field enhancement factor

- EPD fails for a simple reason:
 The electron beam spreads and J is not constant as in the 1D case
- NEED for PIC simulations

Problem 3: Does the runaway stop?

- What happens if we continue?
- Does the process continue providing necessary evaporation for a sufficient time to ignite plasma?

Andreas Kyritsakis, University of Helsinki @ MeVarc, Padova, September 2019

Runaway with full PIC-FEMOCS simulations

 $r_{thin} = 17nm$, $r_{wide} = 54nm$ $r_{appl} = 600MV/m$ (closer to reality)

Results I

M. Veske, et. al. https://arxiv.org/abs/1906.08125

Results II

- Power flux density in a cylinder of 10nm radius: 9.5 MW/mm²
- Similar to SC limit calculations [1]

[1] A. Grudiev et. al. Phys. Rev. accel. beam. 12 102001

Evaporation rates

	wide	thin 1	thin 2	ArcPIC
$r_{Cu} [{\rm ps}^{-1}]$	22 ± 2	110 ± 5	238 ± 12	404
$r_{e} [{\rm fs}^{-1}]$	6.7 ± 0.2	$8.2 {\pm} 0.6$	3.7 ± 0.2	27.1
$R_{Cu} \; [\mathrm{nm}^{-2} \; \mathrm{ns}^{-1}]$	220 ± 20	1100 ± 50	2380 ± 120	40.4
$R_e \; [\mathrm{nm}^{-2} \; \mathrm{ps}^{-1}]$	67 ± 2	82 ± 6	37 ± 2	2.7
$r_{Cu/e} [\times 10^{-3}]$	3.2 ± 0.3	13.5 ± 1.6	64 ± 6	15

Andreas Kyritsakis, University of Helsinki @ MeVarc, Padova, September 2019

Outlook for plasma onset simulations

- Ultimate goal: direct connection of stages 2 and 3, simulation of the full BD process
- Including other particle species (Cu, Cu⁺, Cu⁺⁺ etc)
 - Managing boundary injection between MD and PIC domains (quite challenging)
 - ✓ Simulating larger systems for longer times to check whether the runaway continues
 - Understanding the limitations of the arc ignition progress with respect to:
 - ✓ Power flow and related quantities
 - ✓ Tip size, shape, β, etc

Conclusions

- Getting closer to understanding the transition from intense FE to arc plasma, more complex simulation methods required
- Experiments show that the anode does not play a significant role on BDs. Even the anode flare seems to be caused by cathode material
- Now we know how to properly calculate the biased diffusion parameters, preliminary results indicate a possibility to grow tips by this mechanism
- Surface defects do not affect FE dynamics apart from a slight φ lowering. More evidence that field enhancement is most probably geometric

