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Outline
• The plasma onset stage of vacuum BD and its 

importance for BD mitigation

• Two schools of thought: 

“explosive emission” vs “thermal evaporation”

• Concurrent ED-MD simulations on nanotips

• The thermal runaway process

• Integrating with PIC simulations

• Results

• Conclusions
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Vacuum breakdown stages
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Calculated Sc @ 100 MHz

Jan Paszkiewicz

Importance of stages 2,3: 
power flow limits

Soft Cu electrode,

Anton Saressalo

• Can we use this as a design way to 

mitigate Vacuum breakdown?

• First we need to understand it

• What is the limiting factor for BD 

initiation?

• What makes the available EM power 

to be sufficient in some cases, while 

insufficient in other?
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Plasma ignition: schools of 
thought

• Explosive 
emission (ECTON 
model):
Tip heats up by Joule 

heating (FE current)
The heat accumulates

while the shape stays
constant

Extreme 
temperatures

Direct phase
transition from metal
to plasma

• Thermal runaway -
evaporation:
Tip heats by Nottingham & 

Joule and melts on top
Maxwell stress pulls and 

sharpens it
Molten material at high

temperatures emits vapor
Vapor ionizes by e collisions

(and field ionization)
Ions sputter out more vapor
Plasma gradually builds up
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ArcPIC results

H. Timko et. al., Contrib. Plasma. Phys. 4, 229 (2015). 

Animation by K. Sjobaek

• Plasma can ignite emitter 

assuming a small tip that:

• Emits e with an 

enhancement β>35

• Releases >15 evaporated 

neutrals per 1000 e.

• What is the origin of 

those neutrals? 

• What are the mechanisms 

in Stage 2 that produce 

the necessary vapor?
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Hybrid MD-ED-Emission-Heat

 Thermal runaway: complex process that involves various phenomena 

that have to be taken into account in the calculations
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The concurrent algorithm
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Thermal runaway

A. Kyritsakis et. al, J. Phys. D: Appl. Phys. 51, 225203 (2018) 

• Eappl=0.8GV/m

• Mean evaporation rate (first to last 

evaporation events) rCu= 75±11 atoms/ps

• Mean current re = 2807±153 e/ps

• rCu/e= 0.025±0.003 atoms/e

• The assumption of the ArcPIC simulations  

(0.015 atoms/e) was not unrealistic at all
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Problem 1: Space-charge limited 

Field Emission in 3D

• In reality, no field emitter is flat and the 1D model is inadequate

• Standard treatment: Equivalent Planar Diode (EPD) model

to correct for the field enhancement factor

 EPD fails for a 

simple reason:

The electron beam 

spreads and J is not 

constant as in the 

1D case

 NEED for PIC 

simulations
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Problem 2: connecting 

stages 2 and 3
Stage 2 

(runaway) Stage 3 

(Plasma onset)
Stage 2&3 

(multi-scale)
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Problem 3: Does the runaway stop?

• What happens if we continue?

• Does the process continue providing necessary evaporation for a 

sufficient time to ignite plasma?
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Incorporating PIC in FEMOCS
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Runaway with full PIC-

FEMOCS simulations

rthin = 17nm, rwide = 54nm
Eappl = 600MV/m (closer to reality)
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Results I

M. Veske, et. al. https://arxiv.org/abs/1906.08125 

https://arxiv.org/abs/1906.08125
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Results II

• Power flux density in a cylinder of 10nm radius: 9.5 MW/mm2

• Similar to SC limit calculations [1]

[1] A. Grudiev et. al. Phys. Rev.  accel. beam. 12 102001
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Evaporation rates
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Outlook for plasma onset 

simulations

• Ultimate goal: direct connection of stages 2 and 3, 

simulation of the full BD process

• Including other particle species (Cu, Cu+, Cu++ etc)

 Managing boundary injection between MD and 

PIC domains (quite challenging)

 Simulating larger systems for longer times to 

check whether the runaway continues

• Understanding the limitations of the arc ignition 

progress with respect to:

 Power flow and related quantities

 Tip size, shape, β, etc
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Conclusions

• Getting closer to understanding the transition from 

intense FE to arc plasma, more complex simulation 

methods required

• Experiments show that the anode does not play a 

significant role on BDs. Even the anode flare seems to be 

caused by cathode material

• Now we know how to properly calculate the biased 

diffusion parameters, preliminary results indicate a 

possibility to grow tips by this mechanism

• Surface defects do not affect FE dynamics apart from a 

slight φ lowering. More evidence that field enhancement 

is most probably geometric



Andreas Kyritsakis, University of Helsinki @ MeVarc, Padova, September 2019 21

THANK YOU


