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Motivation
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Surface diffusion is one of the possible contributors to 
the breakdown phenomenon

Kinetic Monte Carlo (KMC) is the best tool for modelling 
diffusion in solids

We have a working KMC model for surfaces, but it’s not 
extensible to multiple elements (Cu + something else)

Good to check if approximations are valid
– Some information on the local atomic environment 

is disregarded in the current model
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Kinetic Monte Carlo
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E. Baibuz et al. Computational Materials Science 146 (2018): 287-302

Γ∝exp(−Em

kT )
Reaction rate:
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Why do we need machine learning?
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We need a large number of accurate migration energy 
barriers for a good model of diffusion

 In principle, everything can be calculated (nudged 
elastic band), but it is too expensive computation-wise

Solution:
– either reduce the amount of barriers needed by 

some approximations, or

– find uncalculated barriers using some clever 
method
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Methods
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We consider the relevant local atomic environment of 
the jump to 2nd nearest neighbour sites

The mapping of local atomic environment to migration 
barrier is a 26-dimensional function
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Machine learning regression is used for 
interpolation/extrapolation of migration barriers, 
based on a training set that can be calculated

descriptor

Neural network



www.helsinki.fi/yliopisto

Methods
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Database of migration energy barriers calculated with 
the LAMMPS [1] implementation of the nudged elastic 
band (NEB) [2,3] method

– Classical MC/MD-CEM potential [4]

Machine learning regression with the FANN library [5]

Kinetic Monte Carlo simulations with the Kimocs [6] 
atomistic KMC program

Further details in will be in Kimari et al. (in preparation)
[1] S. Plimpton. Journal of computational physics 117.1 (1995): 1–19.
[2] Mills, Jónsson, Physical review letters 72 (1994): 1124
[3] Mills et al. Surface Science 324 (1995): 305–337
[4] Stave et al. The Journal of Chemical Physics 93 (1990): 4413–4426
[5] S. Nissen. Tech. rep. Department of Computer Science University of
     Copenhagen (DIKU), 2003. url: http://fann.sf.net.
[6] V. Jansson et al. Nanotechnology 27.26 (2016): 265708.

http://fann.sf.net/
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Machine learning accuracy
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Correlation of true vs. ML-predicted values

ΔE = E
fin

 – E
ini

“Kinetics” “Thermodynamics”

RMS error = 0.087 eV RMS error = 0.104 eV
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Cuboid nanotip flattening
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{100} surface {110} surface {111} surface
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Finalizing the parameterization
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Fixing the KMC time scale can be done by fitting to 
molecular dynamics simulations of nanotip flattening

Γ∝exp(−Em

kT )
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Faceting = roughening?
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Sometimes the {110} surface
destabilises before the tip flattens

Happens surprisingly close to the
known Cu {110} roughening
temperature at 900–1000 K! [7–9]

[7] Mochrie. Physical review letters
     59.3 (1987): 304.
[8] P. Zeppenfeld et al. Physical
     review letters 62.1 (1989): 63.
[9] H. Häkkinen et al. Physical
     review letters 70.16 (1993): 2451.
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Nanoparticles → surface energies
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Relaxing nanoparticle shapes at 900 K

Cube Sphere Octahedron Wulff construction
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Nanowire fragmentation
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Long nanowires break up by diffusion, 1000 K

260 ± 30 ns

8.3 ± 0.8 ns

23.1 ± 1.4 ns
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Conclusions
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The machine learning parameterized kinetic Monte 
Carlo Cu surface model performs at a satisfactory level

The thermodynamics of the Cu system can be taught to 
the artificial neural network implicitly

Destabilisation of the {110} surface observed very near 
to the known roughening temperature of this surface

Outlook
– Extending the model to 3rd and 4th nearest 

neighbours for potential accuracy gain

– Adding more elements in addition to Cu

– Starting the simulations with electric field
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Nudged elastic band calculations
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We need the attempt frequencies      and the migration 
energies

Approximation: same attempt frequency for all events

The barriers are highly dependent on the environment 
of the jump → the nudged elastic band (NEB) method 

Em

ν

NEB:
Mills, Jónsson, Physical review letters 72 (1994): 1124
Mills et al. Surface Science 324 (1995): 305–337

MC/MD-CEM potential:
Stave et al. The Journal of Chemical
Physics 93 (1990): 4413–4426

LAMMPS:
S. Plimpton, Journal of
computational physics 117
(1995): 1–19
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Tethering; problems on the {111}
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Atoms tend to move around pretty easily on the surface 
nudged elastic band

 If the environment changes, we cannot use the barrier 
obtained from the calculation

Solution by S. Vigonski: thether all atoms loosely in 
their initial lattice positions

Consequence: the barriers are
slightly distorted

The basic jump on the {111}
surface is overestimated by a factor
of 3… and the machine learning
model adds another factor of 2
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2nn approximation: error of 0.025 eV
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Data efficiency
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