

Machine learning for Cu surface kinetic Monte Carlo

<u>Jyri Kimari</u>*, Ville Jansson, Ekaterina Baibuz, Flyura Djurabekova University of Helsinki

> Roberto Domingos *Rio de Janeiro State University*

Simon Vigonski, Vahur Zadin University of Tartu

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Jyri Kimari

* email: jyri.kimari@helsinki.fi

www.helsinki.fi/yliopisto

Outline

- Motivation
- Kinetic Monte Carlo + machine learning
- Machine learning accuracy
- Simulation results
 - Conclusions

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Department of Physics Jyri Kimari

Motivation

- Surface diffusion is one of the possible contributors to the breakdown phenomenon
- Kinetic Monte Carlo (KMC) is the best tool for modelling diffusion in solids
- We have a working KMC model for surfaces, but it's not extensible to multiple elements (Cu + something else)
 - Good to check if approximations are valid
 - Some information on the local atomic environment is disregarded in the current model

E. Baibuz et al. Computational Materials Science 146 (2018): 287-302

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Why do we need machine learning?

- We need a large number of accurate migration energy barriers for a good model of diffusion
- In principle, everything can be calculated (nudged elastic band), but it is too expensive computation-wise
- Solution:
 - either reduce the amount of barriers needed by some approximations, or
 - find uncalculated barriers using some clever method

Faculty of Science

Jyri Kimari

Department of Physics

- We consider the relevant local atomic environment of the jump to 2nd nearest neighbour sites
- The mapping of local atomic environment to migration barrier is a 26-dimensional function

$$E_{\rm m} = f(s_0, s_1, s_2, \dots, s_{25})$$
 $s_i = \{0, 1\}$

Machine learning regression is used for interpolation/extrapolation of migration barriers, based on a training set that can be calculated

24 25

Neural network

Reaction coordinate

- Database of migration energy barriers calculated with the LAMMPS [1] implementation of the nudged elastic band (NEB) [2,3] method
 - Classical MC/MD-CEM potential [4]
- Machine learning regression with the FANN library [5]
- Kinetic Monte Carlo simulations with the Kimocs [6] atomistic KMC program

> Further details in will be in Kimari et al. (in preparation)

[1] S. Plimpton. Journal of computational physics **117**.1 (1995): 1–19.

- [2] Mills, Jónsson, Physical review letters 72 (1994): 1124
- [3] Mills et al. Surface Science **324** (1995): 305–337
- [4] Stave et al. The Journal of Chemical Physics **93** (1990): 4413–4426
- [5] S. Nissen. Tech. rep. Department of Computer Science University of Copenhagen (DIKU), 2003. url: http://fann.sf.net.

[6] V. Jansson et al. Nanotechnology 27.26 (2016): 265708.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Jyri Kimari

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Finalizing the parameterization

Fixing the KMC time scale can be done by fitting to molecular dynamics simulations of nanotip flattening

Faceting = roughening?

75.49 ns

- Sometimes the {110} surface destabilises before the tip flattens
 - Happens surprisingly close to the known Cu {110} roughening temperature at 900-1000 K! [7-9]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Jyri Kimari

Nanoparticles \rightarrow surface energies

Relaxing nanoparticle shapes at 900 K

HELSINGFORS UNIVERSITE Department of UNIVERSITY OF HELSINKI Jyri Kimari

Tysics

UNIVERSITY OF HELSINKI

Jyri Kimari

Conclusions

- The machine learning parameterized kinetic Monte Carlo Cu surface model performs at a satisfactory level
- The thermodynamics of the Cu system can be taught to the artificial neural network implicitly

- Destabilisation of the {110} surface observed very near to the known roughening temperature of this surface Outlook
 - Extending the model to 3rd and 4th nearest neighbours for potential accuracy gain
 - Adding more elements in addition to Cu
 - Starting the simulations with electric field

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Nudged elastic band calculations

- We need the attempt frequencies v and the migration energies E_m
- Approximation: same attempt frequency for all events
- > The barriers are highly dependent on the environment of the jump \rightarrow the nudged elastic band (NEB) method

LAMMPS: S. Plimpton, *Journal of computational physics* **117** (1995): 1–19

15

NEB:

Mills, Jónsson, *Physical review letters* **72** (1994): 1124 Mills et al. *Surface Science* **324** (1995): 305–337 MC/MD-CEM potential: Stave et al. *The Journal of Chemical Physics* **93** (1990): 4413–4426

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Jyri Kimari

www.helsinki.fi/yliopisto 9/18/19

Tethering; problems on the {111}

- Atoms tend to move around pretty easily on the surface nudged elastic band
- If the environment changes, we cannot use the barrier obtained from the calculation
- Solution by S. Vigonski: thether all atoms loosely in their initial lattice positions
- Consequence: the barriers are slightly distorted
- The basic jump on the {111} surface is overestimated by a factor of 3... and the machine learning model adds another factor of 2

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

UNIVERSITY OF HELSINKI

Jyri Kimari

WWV