Field emission from the first principles: Effect of point defects on the value of the workfunction

HEIKKI TOIJALA, KRISTJAN EIMRE*, ANDREAS KYRITSAKIS, EKATERINA BAIBUZ, VAHUR ZADIN* AND FLYURA DJURABEKOVA

University of Helsinki, Finland
* University of Tartu, Estonia
Activity at University of Helsinki

Focus of the group:
- Understanding of mechanisms underlying the trigger of arcing in the condition of ultrahigh vacuum
- Radiation effects in materials for the plasma-wall interactions in fusion reactors

Activities:
- Electronic structure calculations
- Atomistic simulations
- Extended time-scale calculations – surface diffusion
- Development of hybrid models to combine the continuum and discrete limits
- Experimental measurement of breakdown characteristics in the small gap large electrode systems
 - Actively collaborating with the group of Dr. Zhenxing Wang from Xi’an Jiaotong University on large gap, small electrode systems
Mechanisms on and under the surface in the presence of electric fields

$q_s \leftrightarrow F_{\text{ext}}$ interaction \Rightarrow surface stress \vec{T}_s

\vec{F}_{ext}

Tip growth

Joule heating, Nottingham effect

surface charges, q_s
surface diffusion
dislocations from the bulk

$q_s \leftrightarrow F_{\text{ext}}$

FLYURA.DJURABEKOVA@MEVARC-8, 2019, PADOVA, ITALY
An I-V scan from a flat surface, performed at limited current, fits to the classical Fowler-Nordheim formula, where \([j_{FE}] = A/m^2 \), \([E] = MV/m\) and \([\phi] = eV\) (usually 4.5 eV).

\[
\begin{align*}
 j_{FE} &= \frac{1.54 \cdot 10^6 (\beta \cdot E)^2}{\phi} \exp(10.41 \cdot \phi^{-1/2}) \exp\left(\frac{-6.53 \cdot 10^3 \phi^{3/2}}{\beta E}\right)
\end{align*}
\]

\(\beta \) is extracted from the slope.
Field Emission

Emission of electrons by tunneling due to an electrostatic field
Dependent on field strength and material/surface

- Potential barrier from surface to vacuum
- The value of a local field determines the width of the barrier
- The value of workfunction, on the other hand, may affect the shape of the barrier to a significant extent

$E_F + \phi$

Energy

Metal

Vacuum

Surface

Distance from surface
Purpose of the study

Defects present on the surface may alter the energetics in the vicinity of it and, thus, the value of the workfunction may also alter. Since the phenomenon of the field emission is based on the transmission of electrons through the barriers, this probability must be calculated based on the quantum-mechanical considerations:

- Work functions
- Tunneling currents
- Field enhancement factors
Free electron metal:

\[E(k) = \frac{\hbar^2}{2m} k^2 = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 + k_z^2\right) \]

\[U(z) = \phi - eFmt - \frac{Q}{z} \]

JWKB approach for transmission:

\[G(E_z) = -\sqrt{\frac{8m}{\hbar}} \int_{z_1}^{z_2} \sqrt{(U(z) - E_z)} \, dz \]

Standard FN theory

Flat surface (1D)
Ab initio approach

- Supply function using density of states obtained from DFT
- Transmission coefficient obtained from quantum transport calculations
- Self-consistent potential obtained from DFT
Density functional theory

Standard method for electronic and ionic structure calculations
Obtain:
electronic structure (density of states)
Potential seen by a single electron
Quantum-mechanical approach

VASP: DFT software
- Plane wave DFT software developed at the University of Vienna
- Relatively fast & accurate (DeltaCodesDFT)
- Interface slightly inconvenient

Kwant: Quantum transport software
- Quantum transport with tight-binding Hamiltonians
- Faster than conventional solvers
- Convenient Python interface
DFT calculations on surface defects

Obtain charge density and potential U everywhere

The potential includes all interactions: $e-e$, e-ion and $e-F_{ext}$

Obtain density of states in the material
Quantum transport

Solve Schrödinger equation for a single electron using numerical FDM method

\[
\frac{\partial^2 \psi}{\partial x^2} \bigg|_{x=x_i} = \frac{1}{a^2} \left(\psi_{i+1} - 2\psi_i + \psi_{i-1} \right), \quad \mathcal{H}\psi_{i,j,k} = \sum_{i',j',k'} H_{i',j',k';i,j,k} \psi_{i',j',k'}
\]

Obtain transmission coefficient for each energy level
Calculation of current density at different electric fields

The transmission probability and the differential current density for the Schottky–Nordheim barrier. The work function is $\phi = 4.76$ eV, the value determined for the (111) copper surface in this work.
Image potential further away from surface

Both LDA and GGA functionals do not give correct asymptotic form of the potential in the vacuum above a metal surface, vanishing exponentially into the vacuum, since they cannot describe long-range correlation due to their local or semilocal nature.

We merge the existing exchange-correlation functional with the image potential

\[V_{\text{XC}} = f(x)V_{\text{XC}}^{\text{PBE}} + (1 - f(x))V_{\text{XC}}^{\text{Image}} \]

\[f(x) = \begin{cases}
1.0 & x \leq 0 \\
\exp(-x/\lambda_x) + [1 - \exp(-x/\lambda_x)] \exp(-x) & x > 0 \end{cases} \]
Image potential further away from surface

Final shape of the corrected potential for a system with a clean surface and an applied electric field of 2 GV m$^{-1}$. The image potential decreases the barrier height by approximately 0.5 eV and makes the barrier slightly thinner. This has the effect of increasing the emitted current by approximately one order of magnitude.
Workfunction at the surface defects in VASP

Clean
Clean: 4.76 eV (lit. 4.85 eV exp. / 4.78 eV DFT)
Step: 4.66 eV (−0.10 eV)
Adatom: 4.44 eV (−0.32 eV)
Pyramid: 4.25 eV (−0.51 eV)
Transmission probability with surface defects

All curves are qualitatively similar

Note that all curves are almost parallel near the Fermi level

Slopes change only of at high energies near the top of the barrier which are irrelevant for field emission (according to the Fermi–Dirac statistics supply function vanishes).

Stronger fields -> flatter curves -> the transmission probability is capped at unity and thus become equally large everywhere
Field emission currents

The total emitted current densities can be computed by integrating the differential current density in the whole energy range.

Field emission electron currents for the different systems and electric fields at zero temperature in e s\(^{-1}\) Å\(^{-2}\). The results for the Schottky–Nordheim barrier are shown for comparison.

<table>
<thead>
<tr>
<th>System</th>
<th>Field</th>
<th>1 GV m(^{-1})</th>
<th>2 GV m(^{-1})</th>
<th>3 GV m(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.-N. barrier</td>
<td></td>
<td>2.47 (\times) 10(^{-18})</td>
<td>1.37 (\times) 10(^{-2})</td>
<td>2.93 (\times) 10(^{3})</td>
</tr>
<tr>
<td>Clean surface</td>
<td></td>
<td>5.46 (\times) 10(^{-19})</td>
<td>5.76 (\times) 10(^{-3})</td>
<td>1.10 (\times) 10(^{3})</td>
</tr>
<tr>
<td>Step defect</td>
<td></td>
<td>8.33 (\times) 10(^{-18})</td>
<td>9.50 (\times) 10(^{-3})</td>
<td>1.15 (\times) 10(^{3})</td>
</tr>
<tr>
<td>Adatom defect</td>
<td></td>
<td>7.20 (\times) 10(^{-16})</td>
<td>7.54 (\times) 10(^{-2})</td>
<td>4.98 (\times) 10(^{3})</td>
</tr>
<tr>
<td>Pyramid defect</td>
<td></td>
<td>5.95 (\times) 10(^{-13})</td>
<td>1.66</td>
<td>4.45 (\times) 10(^{4})</td>
</tr>
</tbody>
</table>
Fowler-Nordheim plot

Linearized plot of Fowler-Nordheim equation
Approximately linear for metal emitters
Parallel lines \Rightarrow no field enhancement
The apparent field enhancement factor of the adatom and pyramid defects are now approximately 1.14 and 1.24 respectively.
No field enhancement

\[F = 2 \text{V/nm} \]

\[F = 3 \text{V/nm} \]

- apex
- side

\[U \text{[eV]} \]

\[z \text{[Å]} \]

\[\Phi \text{[kV]} \]

\[z \text{[μm]} \]
Now we have the method to compute:

- Work functions
- Emission currents
- Field enhancement factors

So far we showed:

- Rather moderate work function decrease with defects
- Increased current is due to decreased work function, not field enhancement
Thank you for your attention!
\(\beta \) is extracted from the slope.