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Activity at University of Helsinki

Focus of the group:

◦ Understanding of mechanisms underlying the trigger of arcing in the condition 
of ultrahigh vacuum

◦ Radiation effects in materials for the plasma-wall interactions in fusion 
reactors

Activities:

◦ Electronic structure calculations

◦ Atomistic simulations

◦ Extended time-scale calculations – surface diffusion

◦ Development of hybrid models to combine the continuum and discrete limits

◦ Experimental measurement of breakdown characteristics in the small gap 
large electrode systems

◦ Actively collaborating with the group of Dr. Zhenxing Wang from Xi’an Jiaotong University on large 
gap, small electrode  systems
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Mechanisms on and under the surface in the 
presence of electric fields
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Field emission - measurement

An I-V scan from a flat surface, performed at limited current, fits to 

the classical Fowler-Nordheim formula, where [jFE] = A/m2, [E] = 

MV/m and [φ] = eV (usually 4.5 eV). 
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Field Emission

Emission of electrons by tunneling due to an electrostatic field

Dependent on field strength and material/surface 

◦ Potential barrier from surface to vacuum

◦ The value of a local field determines the width of the barrier

◦ The value of workfunction, on the other hand, may affect the shape of the 

barrier to a significant extent
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Purpose of the study

Defects present on the surface may alter the energetics in the vicinity of 

it and, thus, the value of the workfunction may also alter.

Since the phenomenon of the field emission is based on the transmission 

of electrons through the barriers, this probability must be calculated 

based on the quantum-mechanical considerations:

◦ Work functions

◦ Tunneling currents

◦ Field enhancement factors
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Standard FN theory
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Ab initio approach

Supply function using 
density of states obtained 
fom DFT

Self-consistent 
potential obtained 
from DFT

Transmission coefficient 
obtained from quantum 
transport calculations
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Density functional theory

Standard method for electronic and ionic structure calculations

Obtain:

electronic structure (density of states)

Potential seen by a single electron

Ion+e-

e-

e-

Ion+

ρ

Many body 
problem

Density 
functional 
problem
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Quantum-mechanical approach

VASP: DFT software

◦ Plane wave DFT software developed at the University of Vienna

◦ Relatively fast & accurate (DeltaCodesDFT)

◦ Interface slightly inconvenient

Kwant: Quantum transport software

◦ Quantum transport with tight-binding Hamiltonians

◦ Faster than conventional solvers

◦ Convenient Python interface
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DFT calculations on surface defects

Obtain charge density and potential U 

everywhere

The potential includes all interactions: 

e-e, e-ion and e-Fext

Obtain density of states in the material
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Quantum transport

Solve Schrödinger equation for a single electron using numerical FDM 
method

Obtain transmission coefficient for each energy level
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Calculation of current density at different
electric fields

The transmission probability 

and the differential current 

density for the Schottky–

Nordheim barrier. The work 

function is 𝜙 = 4.76 eV, the 

value determined for the 

(111) copper surface in this 

work.
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Image potential further away from surface

Both LDA and GGA functionals do not give correct asymptotic form of 

the potential in the vacuum above a metal surface, vanishing 

exponentially into the vacuum, since they cannot describe long-range 

correlation due to their local or semilocal nature. 

We merge the existing exchange-correlation functional with the image 

potential
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Image potential further away from surface

Final shape of the corrected potential for a system with a clean 

surface and an applied electric field of 2 GV m−1. The image 

potential decreases the barrier height by approximately 0.5 eV and 

makes the barrier slightly thinner. This has the effect of increasing 

the emitted current by approximately one order of magnitude.
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Workfunction at the surface defects in VASP

Clean: 4.76 eV (lit. 4.85 eV exp. / 4.78 eV DFT)

Step: 4.66 eV (−0.10 eV)

Adatom: 4.44 eV (−0.32 eV)

Pyramid: 4.25 eV (−0.51 eV)
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Transmission probability with surface defects

All curves are qualitatively similar

Note that all curves are almost parallel near the Fermi level

Slopes change only of at high energies near the top of the barrier which 

are irrelevant for field emission (according to the Fermi–Dirac statistics 

supply function vanishes). 

Stronger fields -> 

flatter curves -> the 

transmission probability 

is capped at unity and 

thus become equally 

large everywhere
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Field emission currents

The total emitted current densities can be computed by integrating the 

differential current density in the whole energy range.
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Field emission electron currents for 
the different systems and electric 
fields at zero temperature in e s−1 Å−2. 
The results for the Schottky–
Nordheim barrier are shown
for comparison.



Fowler-Nordheim plot

Linearized plot of Fowler-Nordheim equation

Approximately linear for metal emitters

Parallel lines ⇒ no field enhancement
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Apparent geometric field enhancement

The apparent field enhancement factor of the adatom and pyramid 

defects are now approximately 1.14 and 1.24 respectively.
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Summary

Now we have the method to compute:

◦ Work functions

◦ Emission currents

◦ Field enhancement factors

So far we showed:

◦ Rather moderate work function decrease with defects

◦ Increased current is due to decreased work function, not field enhancement
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Thank you for your attention!
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