Direct field ionisation

Sergio Calatroni – CERN
ArcPIC simulations

Field, time = 0.004 ns

Courtesy of Andreas Kyritsakis, Kyrre Ness Sjobaek, Helga Timko
Impact ionisation cross section

ArcPIC is based on impact ionisation mechanism

\[e^- + Cu \rightarrow 2e^- + Cu^+ \]

Direct field ionisation

- Direct ionisation of atoms under electric fields of magnitude comparable to atomic electric field
 - Laser WakeField Acceleration: huge electric fields from fs lasers ionise gases
 - CLIC: ionisation of residual gas in the vacuum pipes by the field of the (extremely dense) particle bunches

- Field ionisation is a tunneling phenomenon

- Is this relevant for vacuum arcs?
Modelling field ionisation

The probability for direct field ionisation in the ADK model is:

\[p = 1.52 \times 10^{15} \frac{4^n \xi}{n \Gamma(2n)} \left(\frac{20.5 \frac{\xi^{3/2}}{E}}{E} \right)^{2n-1} \exp \left(-6.83 \frac{\xi^{3/2}}{E} \right) \]

with: \(n = 3.69z\xi^{-1/2} \)

and:

- \(p \) [s^{-1}]: probability of ionisation
- \(\xi \) [eV]: potential of ionisation of a given atom
- \(E \) [GV/m]: electric field
- \(z \): charge number after ionisation

Limit of validity up to \(E_{\text{crit}} = 1.5\xi^{3/2} \) (barrier suppression).

Direct field ionisation probability for Cu

- Calculated for Cu, ionisation state $z = +1$, first ionisation potential $\xi = 7.726$ eV
- Valid for field $E < 32$ GV/m
- (numbers have meaning of course at ps-fs time scales)

<table>
<thead>
<tr>
<th>Field [GV/m]</th>
<th>Probability per unit time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.1x107</td>
</tr>
<tr>
<td>6</td>
<td>1.1x109</td>
</tr>
<tr>
<td>7</td>
<td>2.8x1010</td>
</tr>
<tr>
<td>8</td>
<td>3.1x1011</td>
</tr>
<tr>
<td>9</td>
<td>1.9x1012</td>
</tr>
<tr>
<td>10</td>
<td>8.4x1012</td>
</tr>
</tbody>
</table>
Cross section vs. probability

- **Cu atom** intercepting a stream of electrons of velocity \(v_e = \frac{d}{t} \), having a current of density \(J_e = n_e v_e \)
- Probability for one Cu atom of being ionised in unit time, thus increasing charge count of 1 Cu\(^+\) and 1 e\(^-\):

\[
P = \sigma_e n_e v_e = \sigma J_e
\]

- Where \(\sigma \) is the electron impact ionisation cross section
- \(J_e = 0.5 \text{ A/\(\mu\text{m}^2\)} \) as in 1D PIC simulations
Ionisation probability per unit time, $J_e = 0.5 \text{ A/µm}^2$

Note: the values are directly proportional to J_e.
Impact ionisation vs field ionisation: probabilities

- Purple: direct field ionisation
- Red: impact ionization

Ionisation probability per second vs Electron energy [eV] for different field strengths (5 GV/m to 9 GV/m).

The graph shows a sharp increase in ionisation probability at lower electron energies, followed by a plateau as the electron energy increases. The probability is expressed in units of ionisation events per second.
Conclusion

- Direct field ionisation may be relevant in:
 - Ionisation in the plasma sheath (competition with other mechanisms, i.e. impact ionisation)
 - Ionisation in vicinity of field emitter tip (influence on the breakdown triggering process).

- In ArcPIC simulations, we need 0.015 electrons/neutral copper atom in order to trigger runaway. Including field ionisation in the simulations may lead to relaxing this number.
CERN OPEN DAYS

Explore the future with us
Explorez le futur avec nous

14 - 15 septembre / September 2019
Tesla coil!
Field ionisation

- Simple understanding (hydrogen atom example), it happens if:

\[E_{ext} > \frac{\text{Ry} (/e)}{a_0} = \frac{13.6 \text{ V}}{0.53 \text{ Å}} = 25.7 \text{ GV/m} \]

- Breakdown experiments show \(E_{loc,Cu} = 10.8 \text{ GV/m} \)
- 1D plasma simulations (which make use of neutral injection and electron impact ionisation) show that plasma sheath develops with \(E \approx 6 \text{ GV/m} \)

- Is field ionisation relevant for us?