

LHC Injectors Upgrade

LHC Injectors Upgrade Workshop

Montreux, 13 - 15 February 2019

LHC Injectors Upgrade

Transverse effects with twice brighter beams in the PS

Matthew Fraser

S. Albright, F. Antoniou, H. Bartosik, H. Damerau, V. Forte, A. Huschauer, A. Lasheen, H. Rafique, E. Senes

• Overview of hardware upgrades, target beam parameters, upgraded injection scheme and recent MD's (low chromaticity and high intensity)

• Sources of emittance growth during transfer and on injection plateau:

- Catalogue of (known) contributors and their weighting, with latest MD results
- Brightness measurements and BT-BTP transfer line re-matching
- The challenge of systematic errors, deconvolution and present uncertainties

• Conclusion and outlook:

• Looking to the future at 2 GeV and operation with large longitudinal emittance

- Overview of hardware upgrades, target beam parameters, upgraded injection scheme and recent MD's (low chromaticity and high intensity)
- Sources of emittance growth during transfer:
 - Catalogue of (known) contributors and their weighting, with latest MD results
 - Brightness measurements and BT-BTP transfer line re-matching
 - The challenge of systematic errors, deconvolution and present uncertainties
- Conclusion and outlook:
 - Looking to the future at 2 GeV and operation with large longitudinal emittance

- Increase of PS injection energy for protons from 1.4 to 2 GeV to reduce the space-charge induced tune spread:
 - Beam rigidity increase of 30% is driving most hardware upgrades

- Increase of PS injection energy for protons from 1.4 to 2 GeV to reduce the space-charge induced tune spread:
 - Beam rigidity increase of 30% is driving most hardware upgrades
- Baseline beam parameters foreseen with large longitudinal emittance:
 - Low chromaticity needed to reduce chromatic tune spread, demanding an uncoupled machine and OP deployment of TFB system on injection plateau

- Increase of PS injection energy for protons from 1.4 to 2 GeV to reduce the space-charge induced tune spread:
 - Beam rigidity increase of 30% is driving most hardware upgrades
- Baseline beam parameters foreseen with large longitudinal emittance:
 - Low chromaticity needed to reduce chromatic tune spread, demanding an uncoupled machine and OP deployment of TFB system on injection plateau
 - Blow-up from existing dispersion mismatch will be exacerbated: upgrade of the BT-BTP transfer line needed

- Increase of PS injection energy for protons from 1.4 to 2 GeV to reduce the space-charge induced tune spread:
 - Beam rigidity increase of 30% is driving most hardware upgrades
- Baseline beam parameters foreseen with large longitudinal emittance:
 - Low chromaticity needed to reduce chromatic tune spread, demanding an uncoupled machine and OP deployment of TFB system on injection plateau
 - Blow-up from existing dispersion mismatch will be exacerbated: upgrade of the BT-BTP transfer line needed
 - Large momentum spread coupled with dispersion is a challenge for accurate betatronic emittance measurements (especially for bright beams!)

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)

*Spares are presently planned for installation in LS2

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)

*Spares are presently planned for installation in LS2

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)
SMV10/20	New septa magnets to cope with increased rigidity (+ spares)

*Spares are presently planned for installation in LS2

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)
SMV10/20	New septa magnets to cope with increased rigidity (+ spares)
BT-BTP	BT.BHZ10 and BTM.BHZ10, 6 new laminated BTP quads for PPM operation, upgraded instrumentation and stoppers

*Spares are presently planned for installation in LS2

LIU Workshop, 13-15 February 2019

Matthew Fraser

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)
SMV10/20	New septa magnets to cope with increased rigidity (+ spares)
BT-BTP	BT.BHZ10 and BTM.BHZ10, 6 new laminated BTP quads for PPM operation, upgraded instrumentation and stoppers
SMH42	New eddy current septum + in-vacuum bumper, faster bump collapse (0.5 ms), 4 new out-of-vacuum bumpers, low-beta insertion quads (for FT beams), modified vacuum chamber layout and related instrumentation

LIU Workshop, 13-15 February 2019

*Spares are presently planned for installation in LS2

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)
SMV10/20	New septa magnets to cope with increased rigidity (+ spares)
BT-BTP	BT.BHZ10 and BTM.BHZ10, 6 new laminated BTP quads for PPM operation, upgraded instrumentation and stoppers
SMH42	New eddy current septum + in-vacuum bumper, faster bump collapse (0.5 ms), 4 new out-of-vacuum bumpers, low-beta insertion quads (for FT beams), modified vacuum chamber layout and related instrumentation
KFA45	Upgraded magnets installed (+ spares) with short-circuit termination, dephasing delays to reduce ripple, gas-free PFL's, spare generator in 867 test stand

LIU Workshop, 13-15 February 2019

*Spares are presently planned for installation in LS2

Matthew Fraser

Equipment	Comment
KFA14L1*	Spare magnet (no significant upgrade, minor improvements)
KFA10*	Spare magnets (with upgraded ferrite)
KFA20	System re-cabled like KFA10 (spare magnet to be built)
SMV10/20	New septa magnets to cope with increased rigidity (+ spares)
BT-BTP	BT.BHZ10 and BTM.BHZ10, 6 new laminated BTP quads for PPM operation, upgraded instrumentation and stoppers
SMH42	New eddy current septum + in-vacuum bumper, faster bump collapse (0.5 ms), 4 new out-of-vacuum bumpers, low-beta insertion quads (for FT beams), modified vacuum chamber layout and related instrumentation
KFA45	Upgraded magnets installed (+ spares) with short-circuit termination, dephasing delays to reduce ripple, gas-free PFL's, spare generator in 867 test stand
TFB	Upgraded power amplifiers from 3 to 5 kW for operation at 2 GeV

LIU Workshop, 13-15 February 2019

*Spares are presently planned for installation in LS2

Scenario	Туре	N [10 ¹¹ p/b]	ε _{x,y} [µm]	E [GeV]	ε _z [eVs]	B _l [ns]	∆p/p [10 ⁻³]	$\Delta Q_{x,y}$
Today*	BCMS – OP "0.9 eVs"	~7.5	1.0	1.4	0.85	145	0.9	(0.24, 0.34)
	BCMS – large ε _z "1.5 eVs"	~7.5	1.1	1.4	1.45	155	1.4	(0.14, 0.25)
LIU target**	BCMS	16.25	1.43	2.0	1.48	135	1.1	(0.20, 0.31)
	Standard	32.50	1.80	2.0	3.00	205	1.5	(0.18, 0.30)

*Latest MD data taken in 2018 (F. Antoniou and A. Huschauer et al.) **Taken from G. Rumolo, LIU PROTON BEAM PARAMETERS, EDMS #1296306, July 2017

Scenario	Туре	N [10 ¹¹ p/b]	ε _{x,y} [µm]	E [GeV]	ε _z [eVs]	B _l [ns]	∆p/p [10 ⁻³]	$\Delta Q_{x,y}$
Today*	BCMS – OP "0.9 eVs"	~7.5	1.0	1.4	0.85	145	0.9	(0.24, 0.34)
	BCMS – large ε _z "1.5 eVs"	~7.5	1.1	1.4	1.45	155	1.4	(0.14, 0.25)
LIU	BCMS	16.25	1.43	2.0	1.48	135	1.1	(0.20, 0.31)
target**	Standard	32.50	1.80	2.0	3.00	205	1.5	(0.18, 0.30)

*Latest MD data taken in 2018 (F. Antoniou and A. Huschauer et al.) **Taken from G. Rumolo, LIU PROTON BEAM PARAMETERS, EDMS #1296306, July 2017

Known issue with H dispersion mismatch

- Dispersion function is mismatched on transfer to PS causing blow-up:
 - Long-standing BT-BTP design issue
 - MD's last year quantified mismatch empirically with PS BPM's, fast turn-byturn SEM electronics delivered in 2018
 - Dispersion reproduced with MADX and re-matched optics on R3 used for MD's

Turn-by-turn profile measurements:

Dispersion mismatch confirmed as the dominant source of beam envelope oscillations in first turns

Known issue with H dispersion mismatch

- Dispersion function is mismatched on transfer to PS causing blow-up:
 - Long-standing BT-BTP design issue
 - MD's last year quantified mismatch empirically with PS BPM's, fast turn-byturn SEM electronics delivered in 2018
 - Dispersion reproduced with MADX and re-matched optics on R3 used for MD's

Turn-by-turn profile measurements:

Dispersion mismatch confirmed as the dominant source of beam envelope oscillations in first turns

Known issue with H dispersion mismatch

- Dispersion function is mismatched on transfer to PS causing blow-up:
 - Long-standing BT-BTP design issue
 - MD's last year quantified mismatch empirically with PS BPM's, fast turn-byturn SEM electronics delivered in 2018
 - Dispersion reproduced with MADX and re-matched optics on R3 used for MD's
- Mitigation under LIU project is the upgrade of BT-BTP transfer line

Turn-by-turn profile measurements:

Dispersion mismatch confirmed as the dominant source of beam envelope oscillations in first turns

Matthew Fraser

BCMS cycle with low chromaticity

- Important step was made last year deploying the TFB on operational LHC and MD beams:
 - PFW used to correct chromaticity at low energy
 - In routine operation from fill 7123 (3rd September)
 - Emittance well-preserved along injection plateau
 - Reliable performance of TFB demonstrated

BCMS cycle with low chromaticity

- Important step was made last year deploying the TFB on operational LHC and MD beams:
 - PFW used to correct chromaticity at low energy
 - In routine operation from fill 7123 (3rd September)
 - Emittance well-preserved along injection plateau
 - Reliable performance of TFB demonstrated

BCMS cycle with low chromaticity

- Important step was made last year deploying the TFB on operational LHC and MD beams:
 - PFW used to correct chromaticity at low energy
 - In routine operation from fill 7123 (3rd September)
 - Emittance well-preserved along injection plateau
 - Reliable performance of TFB demonstrated
- Next steps:
 - Upgraded TFB system in LS2
 - Further approach zero chromaticity (and vertical)
 - Implementation also on standard production beams

High intensity MD's

- Successful set-up and optimisation of HI beams:
 - Intensity of 2.6 x 10¹¹ ppb at PS extraction seems within reach using presently available RF upgrades

High intensity MD's

- Successful set-up and optimisation of HI beams:
 - Intensity of 2.6 x 10¹¹ ppb at PS extraction seems within reach using presently available RF upgrades
 - Transverse tune optimization along the flat bottom:
 - Adjustment of the TFB gain settings according to increased intensity
 - Vertical chromaticity increased by $\Delta Q'_y \approx 1$ during the ramp

- What will change after LIU?
 - Overview of hardware upgrades, target beam parameters, upgraded injection scheme and recent MD's (low chromaticity and high intensity)

• Sources of emittance growth during transfer:

- Catalogue of (known) contributors and their weighting, with latest MD results
- Brightness measurements and BT-BTP transfer line re-matching
- The challenge of systematic errors, deconvolution and present uncertainties
- Conclusion and outlook:
 - Looking to the future at 2 GeV and operation with large longitudinal emittance

Expected emittance growth sources today (1)*

Source	Expected <i>∆ε/ε</i> BCMS OP [%]	Expected Δε/ε BCMS 1.5 eVs [%]	Comment
Dispersion mismatch	15 (in H) 1 (in V)	36 (in H) 3 (in V)	Estimates taken empirically from turn-by-turn SEM and BPM data in the first turns after injection
Betatronic mistmatch	~ 1 - 3 (in	H and V)	Turn-by-turn SEM data indicate negligible betatronic mismatch (uncertainties in MADX model from PSB extraction parameters)

Expected emittance growth sources today (1)*

Source	Expected Δε/ε BCMS OP [%]	Expected ∆ε/ε BCMS 1.5 eVs [%]	Comment		
Dispersion mismatch	15 (in H) 1 (in V)	36 (in H) 3 (in V)	Estimates taken empirically from turn-by-turn SEM and BPM data in the first turns after injection		
Betatronic mistmatch	~ 1 - 3 (in H and V)		Turn-by-turn SEM data indicate negligible betatronic mismatch (uncertainties in MADX model from PSB extraction parameters)		
Injection mis-steering	Negligible with TFB ON (<%)		For 0.5 mm (max.) oscillation with TFB OFF: one computes ~ 2%		
Injection bump	Negligible (<%)		njection bump Negligil		No blow-up observed (measurements on second instance) [ref:1] Studies have specified BSW synchronization to avoid blow-up [ref:2]
Injection energy error	Negligible after correction (< %)		Potentially a strong source of blow-up, $\Delta p/p \sim$ few 10 ⁻⁴ is important and needs operational attention!		

Expected emittance growth sources today (1)*

Source	Expected ∆ε/ε BCMS OP [%]	Expected Δε/ε BCMS 1.5 eVs [%]	Comment			
Dispersion mismatch	15 (in H) 1 (in V)	36 (in H) 3 (in V)	Estimates taken empirically from turn-by first turns after injection	-turn SEM and BPM data in the		
Betatronic mistmatch	~ 1 - 3 (in	H and V)	Turn-by-turn SEM data indicate negligib (uncertainties in MADX model from PSB			
Injection mis-steering	Negligible with	TFB ON (<%)	For 0.5 mm (max.) oscillation with TFB (OFF: one computes ~ 2%		
Injection bump	Negligible (<%)		No blow-up observed (measurements on second instance) [ref:1] Studies have specified BSW synchronization to avoid blow-up [ref:2]			
Injection energy error	Negligible after correction (< %)		Potentially a strong source of blow-up, A needs operational attention!	$p/p \sim \text{few } 10^{-4} \text{ is important and}$		
KFA14 ripple	< 1 (in H only)	< 2 (in H only)	Synchronisation with beam will be an important commissioning [ref:3]	TFB should be effective to compensate ripple (< 30 MHz),		
KFA10/20 ripple	2 – 3 (in V only)	2 – 3 (in V only)	Depends on ring and PS injection energy [ref:4]	effectiveness of damping to be computed		
KFA45 ripple + post- pulse	0 – 3.5 (in H only)	0 – 3.5 (in H only)	Depends on ring and PS injection energy [ref:5] KFA45 field measure now available: to be			

Expected emittance growth sources today (2)*

Source	Expected <i>∆ε/ε</i> BCMS OP [%]	Expected <i>∆ε/ε</i> BCMS 1.5 eVs [%]	Comment
PS optics mismatch induced by space-charge	Negligible (< %)		PS closed solution with considering KV (rms) tune spread
Space-charge blow-up in TL	To be assessed		To be checked (in simulation)
Space-charge blow-up in PS	Negligible (< %)	To be assessed	Studies of sensitive of blow-up to WP at injection show a range of $Q_X, Q_y \sim 0.02$ where no blow-up is observed from 2 to 15 ms after injection

- Re-matched optics was provided to study sensitivity of blow-up at injection to dispersion mismatch [ref6]:
 - Ring 3 only: for PPM operation and parallel MD's
 - MADX model compared to betatronic mismatch measured on the PS injection BSG's:

_IU Workshop, 13-15 February 2019

Matthew Fraser

- Re-matched optics was provided to study sensitivity of blow-up at injection to dispersion mismatch [ref6]:
 - Ring 3 only: for PPM operation and parallel MD's
 - MADX model compared to betatronic mismatch measured on the PS injection BSG's:
 - Deconvolution of $\Delta p/p$ introduces errors on measured Twiss (α , β)
 - PSB Twiss parameters not measured accurately (yet!)

Matthew Fraser

- Re-matched optics was provided to study sensitivity of blow-up at injection to dispersion mismatch [ref6]:
 - Ring 3 only: for PPM operation and parallel MD's
 - MADX model compared to betatronic mismatch measured on the PS injection BSG's:
 - Deconvolution of Δp/p introduces errors on measured Twiss (α, β)
 - PSB Twiss parameters not measured accurately (yet!)
 - MADX model good enough to significantly reduce mismatch

• Re-matched optics was provided to study sensitivity of blow-up at injection to dispersion mismatch [ref6]:

Dispersion mismatch at injection

- Blow-up independent of initial emittance, proportional to $\left(\frac{\Delta p}{p}\right)^2$
 - i.e. a constant offset as *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{1}{2} M_D^2 \left(\frac{\Delta p}{p}\right)^2$$
 where $M_D^2 = \left(\frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta}\right)$

 $\varepsilon_n = (\beta \gamma)_{\text{rel}} \varepsilon_g$

is not forgotten!

- Blow-up independent of initial emittance, proportional to $\left(\frac{\Delta p}{p}\right)$ •
 - i.e. a constant offset as *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{1}{2} M_D^2 \left(\frac{\Delta p}{p}\right)^2 \text{ where } M_D^2 = \left(\frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta}\right)$$

Technique	M _D [m ^{1/2}]	
	Operational	
T-by-turn BPM response (D mismatch from Δf steering)	0.40 ± 0.04	

PS BPM #

IU Workshop, 13-15 February 2019

Matthew Fraser

 $\varepsilon_n = (\beta \gamma)_{\text{rel}} \varepsilon_g$

is not forgotten!

horizontal

ĪΛĐ

[m⁶⁵]

Dispersion mismatch at injection

- Blow-up independent of initial emittance, proportional to $\left(\frac{\Delta p}{n}\right)$
 - i.e. a constant offset as *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{1}{2} M_D^2 \left(\frac{\Delta p}{p}\right)^2$$
 where $M_D^2 = \left(\frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta}\right)$

_IU Workshop, 13-15 February 2019

PS BPM # Matthew Fraser $\varepsilon_n = (\beta \gamma)_{\text{rel}} \varepsilon_g$

is not forgotten!

[m^{s2}] Ū

PR.BPM43

horizontal

vertical

Dispersion mismatch at injection

- Blow-up independent of initial emittance, proportional to $\left(\frac{\Delta p}{n}\right)^2$
 - i.e. a constant offset as *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{1}{2} M_D^2 \left(\frac{\Delta p}{p}\right)^2$$
 where $M_D^2 = \left(\frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta}\right)$

 $\varepsilon_n = (\beta \gamma)_{\text{rel}} \varepsilon_g$

is not forgotten!

Dispersion mismatch at injection

- Blow-up independent of initial emittance, proportional to $\left(\frac{\Delta p}{n}\right)^2$
 - i.e. a constant offset as *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{1}{2} M_D^2 \left(\frac{\Delta p}{p}\right)^2$$
 where $M_D^2 = \left(\frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta}\right)$

 $\varepsilon_n = (\beta \gamma)_{\text{rel}} \varepsilon_g$

is not forgotten!

Betatronic mismatch at injection

• Blow-up dependent on initial emittance, expected to be negligible:

• i.e. a linear *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{\varepsilon_0}{2} \left(M_g + \frac{1}{M_g} - 2 \right) \text{ where } M_g + \frac{1}{M_g} = \beta \gamma_0 + \gamma \beta_0 - 2\alpha \alpha_0 \quad \left[\frac{\beta}{M_g} + \frac{1}{M_g} - \frac{1}{M_g} + \frac$$

 β - mismatched β_0 - matched

Betatronic mismatch at injection

• Blow-up dependent on initial emittance, expected to be negligible:

• i.e. a linear *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{\varepsilon_0}{2} \left(M_g + \frac{1}{M_g} - 2 \right) \text{ where } M_g + \frac{1}{M_g} = \beta \gamma_0 + \gamma \beta_0 - 2\alpha \alpha_0 \qquad \beta_0 \text{ - mismatched} \\ \beta_0 \text{ - matched}$$

• Envelope would beat twice as fast $(2q_H)$ if betatronic mismatch was dominant

Betatronic mismatch at injection

• Blow-up dependent on initial emittance, expected to be negligible:

• i.e. a linear *f*(intensity) on brightness curves:

$$\Delta \varepsilon = \frac{\varepsilon_0}{2} \left(M_g + \frac{1}{M_g} - 2 \right) \text{ where } M_g + \frac{1}{M_g} = \beta \gamma_0 + \gamma \beta_0 - 2\alpha \alpha_0 \qquad \beta_0 \text{ - mismatched} \\ \beta_0 \text{ - matched}$$

• Envelope would beat twice as fast $(2q_H)$ if betatronic mismatch was dominant

Space-charge in PS

- Sensitivity of blow-up after injection to WP:
 - BCMS OP on Ring 3: low Q' cycle, 72e10 p
 - WP shows little sensitivity over range of 0.02
 - "Fast" blow-up appears only close to integer
 - No significant impact on blow-up from the space-charge induced tune spread at timescales > 2 ms

Space-charge in PS

- Sensitivity of blow-up after injection to WP:
 - BCMS OP on Ring 3: low Q' cycle, 72e10 p
 - WP shows little sensitivity over range of 0.02
 - "Fast" blow-up appears only close to integer
 - No significant impact on blow-up from the space-charge induced tune spread at timescales > 2 ms

• Next steps:

 Simulations with space-charge to be carried out and benchmarked with measurements

Measured H blow-up: BCMS 0.9 eVs

• Re-matching BT-BTP has only a small impact on filamented **horizontal emittance** measured 15 ms after injection using the wire-scanner:

LIU Workshop, 13-15 February 2019

Measured H blow-up: BCMS 1.5 eVs

 Re-matching BT-BTP has only a small impact on filamented horizontal emittance measured 15 ms after injection using the wire-scanner:

_IU Workshop, 13-15 February 2019

95

Measured H blow-up: re-matching BT-BTP

 Re-matching BT-BTP has only a small impact on filamented horizontal emittance measured 15 ms after injection using the wire-scanner:

_IU Workshop, 13-15 February 2019

85

90

95

Measured H blow-up: BCMS from R3

• Re-matching BT-BTP has only a small impact on filamented **horizontal emittance** measured 15 ms after injection using the wire-scanner:

Beam type	Relative momentum spread [1e-3]	OP optics ∆ <i>ε</i> abs. [mm mrad] @ I = 75e10 p	
	Measured by TOMO	Expected	Measured
BCMS OP	0.9	0.15	0.33 ± 0.06
BCMS 1.5 eVs	1.4	0.36	0.43 ± 0.06
Ratio (1.5 eVs/OP)	2.4 = (1.4/0.9) ²	2.4	~ 1.3

*Dominant blow-up only from dispersion included in expected blow-up (other sources only few %)

Measured H blow-up: BCMS from R3

• Re-matching BT-BTP has only a small impact on filamented **horizontal emittance** measured 15 ms after injection using the wire-scanner:

Beam type	Relative momentum spread [1e-3]	OP optics ∆ <i>ɛ</i> abs. [mm mrad] @ I = 75e10 p		abs. [ned optics Δε mm mrad] = 75e10 p
	Measured by TOMO	Expected	Measured	Expected	Measured
BCMS OP	0.9	0.15	0.33 ± 0.06	0.011	0.30 ± 0.09
BCMS 1.5 eVs	1.4	0.36	0.43 ± 0.06	0.027	0.35 ± 0.09
Ratio (1.5 eVs/OP)	$2.4 = (1.4/0.9)^2$	2.4	~ 1.3	2.4	~ 1.2

*Dominant blow-up only from dispersion included in expected blow-up (other sources only few %)

- A large, missing systematic contribution to the emittance growth is observed
- Difficult to explain entirely with the expected sources of blow-up

Impact of deconvolution algorithms

• Observed systematics in the measured data, see "Impact of deconvolution algorithms" in F. Antoniou's presentation, but also numerically:

nm)	6000 -	
2 C	5000 -	
μ N G	<u>;</u> ; 4000 -	
> ⊂	G 4000 - € 9 3000 - 8	
sia Sia	2000 -	
Gaussian	1000 -	
gal		
O	-40000 -20000 0 20000 40000 × (um)	

Distributions	Quadrature (Gauss. fit) Emittance Error [%]	Deconvolution Emittance Error [%]
6D Gaussian $ε_T$ = 2.5 um, $ε_L$ = 0.5 eVs	+ 0.6	+ 0.25

Impact of deconvolution algorithms

• Observed systematics in the measured data, see "Impact of deconvolution algorithms" in F. Antoniou's presentation, but also numerically:

Distributions	Quadrature (Gauss. fit) Emittance Error [%]	Deconvolution Emittance Error [%]
6D Gaussian $\epsilon_T = 2.5 \text{ um}, \epsilon_L = 0.5 \text{ eVs}$	+ 0.6	+ 0.25
4D Gaussian + 2D Parabolic $\epsilon_T = 2.5 \text{ um}, \epsilon_L = 0.5 \text{ eVs}$	+ 4.4	+ 2.7

Impact of deconvolution algorithms

• Observed systematics in the measured data, see "Impact of deconvolution algorithms" in F. Antoniou's presentation, but also numerically:

- What will change after LIU?
 - Overview of hardware upgrades, target beam parameters, upgraded injection scheme and recent MD's (low chromaticity and high intensity)
- Sources of emittance growth during transfer:
 - Catalogue of (known) contributors and their weighting, with latest MD results
 - Brightness measurements and BT-BTP transfer line re-matching
 - The challenge of systematic errors, deconvolution and present uncertainties

• Conclusion and outlook:

• Looking to the future at 2 GeV and operation with large longitudinal emittance

Conclusion

- Turn-by-turn measurements after injection have confirmed and quantified the dispersion dominated mismatch
- Significant H (rms) blow-up in PS of ~ 0.33 mm mrad measured on BCMS OP 0.9 eVs compared to an expected blow-up of ~ 0.15 mm mrad:
 - No known physical source can explain the relatively large blow-up observed
- Re-matching BT-BTP TL made no significant impact on filamented emittance:
 - Same conclusion was reached after T-by-T SEM MD's in early 2000's [Ref7]
- Systematic errors play an important role in emittance measured from profiles:
 - Uncertainty in the optics parameters (e.g. β in PSB) and systematic errors in the momentum deconvolution algorithm (distribution dependent) are likely culprits
- No evidence yet that space-charge is driving the apparent blow-up

- Too early to state firmly the expected blow-up during transfer at 2 GeV with the apparent role played by systematic errors:
 - Bright beams with large D make absolute emittance measurements challenging
- Lack of sensitivity to re-matching of the transfer line is concerning...
 - Further studies are planned in 2019 to check impact of systematic errors: from changing (filamented) distributions, including simulations with space-charge
 - Single coherent report to be published with full analysis of BGI and WS data
- Improved tools are needed to effectively de-convolute beam profiles
 - Will need to use lessons learnt in LS2 and apply them in operation in Run 3

- Thanks to the PSB and PS OP crews for putting up with us on very busy MD days and helping taking the data presented
- Thanks to BE-BI for the provision of the turn-by-turn SEM grid electronics and acquisition in 2018

- [Ref1] Studies by E. Senes, presented by M.A. Fraser at LIU Beam Performance Meeting, Emittance growth at PS injection for different longitudinal emittances, CERN, Geneva, 5 July 2018
- [Ref2] M. Serluca et al., Optics Studies and Space Charge Effects during the Injection Process at the CERN PS, Space charge meeting, CERN, Geneva, 6 April 2017
- [Ref3] M.A. Fraser, KFA14 flat-top ripple measurements, ABT-TCM meeting, CERN, Geneva, 1 October 2018
- [Ref4] V. Forte et al., New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV, CERN-ACC-NOTE-2018-0032, 9 Apr 2018. 30 p.
- [Ref5] V. Forte et al., Magnetic Waveform Measurements of the PS Injection Kicker KFA45 and Future Emittance Growth Estimates, CERN-ACC-NOTE-2018-0031, 9 Apr 2018. - 47 p
- [Ref6] V. Forte et al., Overview of the CERN PSB-to-PS Transfer Line Optics Matching Studies in View of the LHC Injectors Upgrade Project, WEP2PO006, HB 2018, Daejeon, Korea, 18 -22 June 2018
- [Ref7] M. Benedikt et al., Study of a new PSB-PS Transfer Line Optics with Improved Dispersion Matching by means of turn-by-turn beam profile acquisitions, PS/AE/Note 2001-003 (MD), CERN, Geneva.

www.cern.ch

LIU Workshop, 13-15 February 2019

- PSB extraction kicker waveforms measured for all rings [ref3]:
 - Beam-based measurements using short (σ = 10 ns) INDIV bunch
 - Ripple < $\pm 1.5\%$

LIU Workshop, 13-15 February 2019

- PSB extraction kicker waveforms measured for all rings [ref3]:
 - Beam-based measurements using short (σ = 10 ns) INDIV bunch
 - Ripple < ±1.5%
 - Blow-up depends on bunch length and estimated at <1% for LIU BCMS

- PSB extraction kicker waveforms measured for all rings [ref3]:
 - Beam-based measurements using short (σ = 10 ns) INDIV bunch
 - Ripple < ±1.5%
 - Blow-up depends on bunch length and estimated at <1% for LIU BCMS
- Beam-kicker synchronisation is an important commissioning step

Blow up from KFA10 and KFA20

- Recombination kicker waveforms measured and emittance growth assessed [refX]:
 - Beam-based measurements carried out using long bunches
 - Rise-times limit length of bunches
 - Vertical blow-up depends on bunch length
 - Estimated blow-up depends on ring, worstcase < 3%
 - Worst-case LIU standard beam at 2 GeV (205 ns) from 2 – 3% shown in table:

KFA	Vertical blow-up [%]			
	R1	R2	R3	R4
BT1.KFA10	1.9	1.9	0	0
BT4.KFA10	0	0	1.9	1.9
BT2.KFA20	1.0	2.2	0.0	0.3
Total	2.1	2.9	1.9	1.9

- Beam based measurements combined with PSpice model current to estimate emittance blow-up [ref5]:
 - Measurements resolution limited (~5%)

- Beam based measurements combined with PSpice model current to estimate emittance blow-up [ref5]:
 - Measurements resolution limited (~5%)
 - Blow-up at 3.5% for certain bunches
- Post-pulse ripple shown to be constant and does not scale with voltage
- Next steps:
 - Magnetic measurements made in tunnel at start of LS2 available, blow-up estimates to be reviewed

Measured H blow-up: $\Delta \varepsilon$ unaccounted for?

- To elucidate the challenge we face with systematics, let's consider what effective emittance blow-up is missing to give the measured values
 - Assuming independent error sources, adding linearly:

$$\Delta \varepsilon_{\text{missing}} = \varepsilon_{\text{PS,meas}} - \left(\varepsilon_{\text{PSB,meas}} + \frac{1}{2}M_D^2 \left(\frac{\Delta p}{p}\right)^2\right)$$

Beam type	∆ɛ _{missing} for OP optics [mm mrad]	$\Delta arepsilon_{f missing}$ for Re-matched optics [mm mrad]
BCMS OP	0.18 ± 0.06	0.29 ± 0.09
BCMS 1.5 eVs	0.07 ± 0.06	0.32 ± 0.09

- A large, missing systematic contribution to the emittance growth is observed
- Difficult to explain entirely with the expected sources of blow-up

Dispersion mismatch vs. DP/P

- Study of blow-up measured with wire-scanners using standard LHC25 beam as function of longitudinal emittance:
 - $\Delta \varepsilon \propto \left(\frac{\Delta p}{p}\right)^2$ for large Δp
 - Factor two larger mismatch observed
 - Deconvolution/systematics in both machines play a role

Technique	M _D [m ^{1/2}]	
	I = 1.6e12 p	I = 2.0e12 p
Wire-scanner profile $\Delta \varepsilon$ (Deconvolution of dispersive component needed)	0.77 ± 0.003	0.74 ± 0.003
T-by-turn data (BPM/SEM)	0.40 ± 0.04	

IU Workshop, 13-15 February 2019

Introducing significant betatronic mismatch

• Deliberate mismatch to excite betatronic mismatch:

LIU Workshop, 13-15 February 2019

Sensitivity studies with mismatch of BT-QNO10

Systematic emittance blow-up studies

LIU Workshop, 13-15 February 2019

Measured V blow-up: BCMS 1.5 eVs

• Re-matching BT-BTP has no impact on filamented **vertical emittance** measured 15 ms after injection using the wire-scanner:

LIU Workshop, 13-15 February 2019

Summary of blow-up studies

- Emittance blow-up measurements are sensitive to systematic errors and appear unreliable
 - Important to better understand role played by errors on optics functions, changing distributions with filamentation and deconvolution etc.
- Horizontal blow-up measured after filamentation is larger than expected from the observed envelope oscillations at injection:
 - In other words, re-matching TL (validated by T-by-T measurements) has very little impact
 - Same conclusion was reached after T-by-T SEM MD's in early 2000's
 - Difficult to attribute the unknown blow-up source to imperfections (e.g. steering, kicker ripple, injection energy error, etc.)
 - No blow-up seen in ~ ms after injection on WS measurements: indicates fast effects (< 2 ms, comparable to profile measurement integration time) or systematic error

