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the space-charge induced tune spread:
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• Increase of PS injection energy for protons from 1.4 to 2 GeV to reduce 
the space-charge induced tune spread:
• Beam rigidity increase of 30% is driving most hardware upgrades

• Baseline beam parameters foreseen with large longitudinal emittance:
• Low chromaticity needed to reduce chromatic tune spread, demanding an 

uncoupled machine and OP deployment of TFB system on injection plateau 
• Blow-up from existing dispersion mismatch will be exacerbated: upgrade of 

the BT-BTP transfer line needed
• Large momentum spread coupled with dispersion is a challenge for accurate 

betatronic emittance measurements (especially for bright beams!)
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Scenario Type N
[1011 p/b]

εx,y
[μm] 

E
[GeV]

εz
[eVs] 

Bl
[ns]

∆p/p
[10-3]

∆Qx,y

Today* BCMS – OP
“0.9 eVs”

~7.5 1.0 1.4 0.85 145 0.9 (0.24, 0.34)

BCMS – large εz
“1.5 eVs”

~7.5 1.1 1.4 1.45 155 1.4 (0.14, 0.25)

LIU 
target**

BCMS 16.25 1.43 2.0 1.48 135 1.1 (0.20, 0.31)
Standard 32.50 1.80 2.0 3.00 205 1.5 (0.18, 0.30)

*Latest MD data taken in 2018 (F. Antoniou and A. Huschauer et al.)
**Taken from G. Rumolo, LIU PROTON BEAM PARAMETERS, EDMS #1296306, July 2017
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• Dispersion function is mismatched on 
transfer to PS causing blow-up:
• Long-standing BT-BTP design issue 
• MD’s last year quantified mismatch 

empirically with PS BPM’s, fast turn-by-
turn SEM electronics delivered in 2018

• Dispersion reproduced with MADX and 
re-matched optics on R3 used for MD’s

Turn-by-turn profile measurements:
Dispersion mismatch confirmed as the dominant 
source of beam envelope oscillations in first turns

OP BT-BTP optics

QX = 6.21

RMS H-profile at BSG52
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• Dispersion function is mismatched on 
transfer to PS causing blow-up:
• Long-standing BT-BTP design issue 
• MD’s last year quantified mismatch 

empirically with PS BPM’s, fast turn-by-
turn SEM electronics delivered in 2018

• Dispersion reproduced with MADX and 
re-matched optics on R3 used for MD’s

• Mitigation under LIU project is the 
upgrade of BT-BTP transfer line

Turn-by-turn profile measurements:
Dispersion mismatch confirmed as the dominant 
source of beam envelope oscillations in first turns

OP BT-BTP optics
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• Important step was made last year deploying 
the TFB on operational LHC and MD beams:
• PFW used to correct chromaticity at low energy
• In routine operation from fill 7123 (3rd September) 
• Emittance well-preserved along injection plateau
• Reliable performance of TFB demonstrated
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• Important step was made last year deploying 
the TFB on operational LHC and MD beams:
• PFW used to correct chromaticity at low energy
• In routine operation from fill 7123 (3rd September) 
• Emittance well-preserved along injection plateau
• Reliable performance of TFB demonstrated

• Next steps:
• Upgraded TFB system in LS2
• Further approach zero chromaticity (and vertical)
• Implementation also on standard production beams

TFB 
ON

TFB 
OFF
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• Successful set-up and optimisation of 
HI beams:
• Intensity of 2.6 x 1011 ppb at PS 

extraction seems within reach using 
presently available RF upgrades 
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• Successful set-up and optimisation of 
HI beams:
• Intensity of 2.6 x 1011 ppb at PS 

extraction seems within reach using 
presently available RF upgrades 

• Transverse tune optimization along the 
flat bottom:
− Adjustment of the TFB gain settings 

according to increased intensity
− Vertical chromaticity increased by 

ΔQ’
y ≈ 1 during the ramp 

After optimisation:
close to 2.5 x 1011 ppb
(LHC standard – 72b) 
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Source Expected ∆𝜺/𝜺
BCMS OP [%]

Expected ∆𝜺/𝜺
BCMS 1.5 eVs [%]

Comment

Dispersion mismatch 15 (in H) 
1 (in V)

36 (in H)
3 (in V)

Estimates taken empirically from turn-by-turn SEM and BPM data in the 
first turns after injection

Betatronic mistmatch ~ 1 - 3 (in H and V) Turn-by-turn SEM data indicate negligible betatronic mismatch 
(uncertainties in MADX model from PSB extraction parameters)

*For input emittance of 1 mm mrad (rms, norm) at 1.4 GeV and 75e10 p
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(uncertainties in MADX model from PSB extraction parameters)

Injection mis-steering Negligible with TFB ON (<%) For 0.5 mm (max.) oscillation with TFB OFF: one computes ~ 2%

Injection bump Negligible (<%) No blow-up observed (measurements on second instance) [ref:1]
Studies have specified BSW synchronization to avoid blow-up [ref:2]

Injection energy error Negligible after correction (< %) Potentially a strong source of blow-up, ∆𝑝/𝑝 ~ few 10-4 is important and
needs operational attention!

*For input emittance of 1 mm mrad (rms, norm) at 1.4 GeV and 75e10 p
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Source Expected ∆𝜺/𝜺
BCMS OP [%]

Expected ∆𝜺/𝜺
BCMS 1.5 eVs [%]

Comment

Dispersion mismatch 15 (in H) 
1 (in V)

36 (in H)
3 (in V)

Estimates taken empirically from turn-by-turn SEM and BPM data in the 
first turns after injection

Betatronic mistmatch ~ 1 - 3 (in H and V) Turn-by-turn SEM data indicate negligible betatronic mismatch 
(uncertainties in MADX model from PSB extraction parameters)

Injection mis-steering Negligible with TFB ON (<%) For 0.5 mm (max.) oscillation with TFB OFF: one computes ~ 2%

Injection bump Negligible (<%) No blow-up observed (measurements on second instance) [ref:1]
Studies have specified BSW synchronization to avoid blow-up [ref:2]

Injection energy error Negligible after correction (< %) Potentially a strong source of blow-up, ∆𝑝/𝑝 ~ few 10-4 is important and
needs operational attention!

KFA14 ripple < 1 (in H only) < 2 (in H only) Synchronisation with beam will be an 
important commissioning [ref:3]

TFB should be effective to 
compensate ripple (< 30 MHz), 
effectiveness of damping to be 

computed

KFA45 field measurements 
now available: to be analysed

KFA10/20 ripple 2 – 3 (in V only) 2 – 3 (in V only) Depends on ring and PS injection 
energy [ref:4]

KFA45 ripple + post-
pulse

0 – 3.5 (in H only) 0 – 3.5 (in H only) Depends on ring and PS injection 
energy [ref:5]

*For input emittance of 1 mm mrad (rms, norm) at 1.4 GeV and 75e10 p
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Source Expected ∆𝜺/𝜺
BCMS OP [%]

Expected ∆𝜺/𝜺
BCMS 1.5 eVs [%]

Comment

PS optics mismatch induced by space-charge Negligible (< %) PS closed solution with considering KV (rms) tune 
spread

Space-charge blow-up in TL To be assessed To be checked (in simulation)

Space-charge blow-up in PS Negligible (< %) To be assessed Studies of sensitive of blow-up to WP at injection 
show a range of QX,Qy ~ 0.02 where no blow-up is 
observed from 2 to 15 ms after injection

*For input emittance of 1 mm mrad (rms, norm) at 1.4 GeV and 75e10 p
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• Re-matched optics was provided to study sensitivity of blow-up at 
injection to dispersion mismatch [ref6]:
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• Ring 3 only: for PPM operation and 
parallel MD’s

• MADX model compared to betatronic
mismatch measured on the PS injection 
BSG’s:

kBT.QNO10 [A] kBT.QNO10 [A]

V - simulation

H - simulation

MADX
simulation
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• Re-matched optics was provided to study sensitivity of blow-up at 
injection to dispersion mismatch [ref6]:
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• Ring 3 only: for PPM operation and 
parallel MD’s

• MADX model compared to betatronic
mismatch measured on the PS injection 
BSG’s:
• Deconvolution of ∆p/p introduces 

errors on measured Twiss (α, 𝛽) 
• PSB Twiss parameters not measured 

accurately (yet!)
• MADX model good enough to 

significantly reduce mismatch kBT.QNO10 [A] kBT.QNO10 [A]

V - simulation

H - simulation

MADX
simulation
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BT-BTP optics for brightness studies
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• Re-matched optics was provided to study sensitivity of blow-up at 
injection to dispersion mismatch [ref6]:

LIU Workshop, 13-15 February 2019

PS ringBT-BTPPSB ring
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• Blow-up independent of initial emittance, proportional to ∆%
%

&

• i.e. a constant offset as f(intensity) on brightness curves:

∆𝜀 = 	 *
&
𝑀,
& ∆%

%

&
where 𝑀,

& = 	 ∆,-.(0∆,1.2∆,)-

0

𝜀4 = (𝛽𝛾)rel	𝜀9
is not forgotten!
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• Blow-up independent of initial emittance, proportional to ∆%
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Technique MD [m1/2]

Operational Re-matched

T-by-turn BPM 
response
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*error analysis to be completed
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Operational Re-matched

T-by-turn BPM 
response
(D mismatch from 
∆𝑓 steering) 

0.40 ± 0.04 0.14 ± 0.02

T-by-turn SEM 
envelope beating
(fitted D mismatch)*

0.397 0.110

*error analysis to be completed
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• Blow-up dependent on initial emittance, expected to be negligible:
• i.e. a linear f(intensity) on brightness curves:

∆𝜀 = 	 AB
&
𝑀9 +

*
DE
− 2 where 𝑀9 +

*
DE
	= 𝛽𝛾G + 𝛾𝛽G − 2𝛼𝛼G

𝜀4 = (𝛽𝛾)rel	𝜀9
is not forgotten!

𝛽- mismatched
𝛽G - matched
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• Blow-up dependent on initial emittance, expected to be negligible:
• i.e. a linear f(intensity) on brightness curves:

∆𝜀 = 	 AB
&
𝑀9 +

*
DE
− 2 where 𝑀9 +

*
DE
	= 𝛽𝛾G + 𝛾𝛽G − 2𝛼𝛼G

• Envelope would beat twice as fast (2qH) if betatronic mismatch was dominant

Technique Mg

Operational Re-matched

T-by-turn SEM 
envelope beating
(fitted mismatch)*

0.89 0.96

*error analysis to be 
completed

𝜀4 = (𝛽𝛾)rel	𝜀9
is not forgotten!

𝛽- mismatched
𝛽G - matched

Operational optics – H plane Re-matched optics – H plane

σ x
2 /β

x,
fit

[µ
m

]
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• Blow-up dependent on initial emittance, expected to be negligible:
• i.e. a linear f(intensity) on brightness curves:

∆𝜀 = 	 AB
&
𝑀9 +

*
DE
− 2 where 𝑀9 +

*
DE
	= 𝛽𝛾G + 𝛾𝛽G − 2𝛼𝛼G

• Envelope would beat twice as fast (2qH) if betatronic mismatch was dominant

Technique Mg

Operational Re-matched

T-by-turn SEM 
envelope beating
(fitted mismatch)*

0.89 0.96

∆𝜀 BCMS OP
abs. [mm mrad]

0.007 negligible

*error analysis to be 
completed

𝜀4 = (𝛽𝛾)rel	𝜀9
is not forgotten!

𝛽- mismatched
𝛽G - matched

Operational optics – H plane Re-matched optics – H plane

σ x
2 /β

x,
fit

[µ
m

]



Space-charge in PS

LIU Workshop, 13-15 February 2019 Matthew Fraser 16

• Sensitivity of blow-up after injection to WP:
• BCMS OP on Ring 3: low Q’ cycle, 72e10 p
• WP shows little sensitivity over range of 0.02
• “Fast” blow-up appears only close to integer
• No significant impact on blow-up from the 

space-charge induced tune spread at 
timescales > 2 ms

WP during t-by-t SEM 
grid measurements 
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• Sensitivity of blow-up after injection to WP:
• BCMS OP on Ring 3: low Q’ cycle, 72e10 p
• WP shows little sensitivity over range of 0.02
• “Fast” blow-up appears only close to integer
• No significant impact on blow-up from the 

space-charge induced tune spread at 
timescales > 2 ms

• Next steps:
• Simulations with space-charge to be carried 

out and benchmarked with measurements

WP during t-by-t SEM 
grid measurements 



LIU Workshop, 13-15 February 2019 Matthew Fraser 17

• Re-matching BT-BTP has only a small impact on filamented horizontal 
emittance measured 15 ms after injection using the wire-scanner:

Measured H blow-up: BCMS 0.9 eVs

PSB D measured, β model
PS D and β measured

26th September 2018 11th November 2018

PSB D measured, β model
PS D and β measured
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• Re-matching BT-BTP has only a small impact on filamented horizontal 
emittance measured 15 ms after injection using the wire-scanner:

Measured H blow-up: BCMS 1.5 eVs

6th November 2018 7th November 2018

PSB D measured, β model
PS D and β measured

PSB D measured, β model
PS D and β measured
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• Re-matching BT-BTP has only a small impact on filamented horizontal 
emittance measured 15 ms after injection using the wire-scanner:

Measured H blow-up: re-matching BT-BTP

6th November 2018

26th September & 
11th November 2018
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• Re-matching BT-BTP has only a small impact on filamented horizontal 
emittance measured 15 ms after injection using the wire-scanner:

Measured H blow-up: BCMS from R3

Beam type Relative
momentum

spread [1e-3]

OP optics ∆𝜀
abs. [mm mrad]

@ I = 75e10 p
Measured by TOMO Expected Measured

BCMS OP 0.9 0.15 0.33 ± 0.06

BCMS 1.5 eVs 1.4 0.36 0.43 ± 0.06

Ratio (1.5 eVs/OP) 2.4 = (1.4/0.9)2 2.4 ~ 1.3
*Dominant blow-up only from dispersion included in expected blow-up (other sources only few %) 
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• Re-matching BT-BTP has only a small impact on filamented horizontal 
emittance measured 15 ms after injection using the wire-scanner:

Measured H blow-up: BCMS from R3

*Dominant blow-up only from dispersion included in expected blow-up (other sources only few %) 

Beam type Relative
momentum

spread [1e-3]

OP optics ∆𝜀
abs. [mm mrad]

@ I = 75e10 p

Rematched optics ∆𝜀
abs. [mm mrad]

@ I = 75e10 p
Measured by TOMO Expected Measured Expected Measured

BCMS OP 0.9 0.15 0.33 ± 0.06 0.011 0.30 ± 0.09

BCMS 1.5 eVs 1.4 0.36 0.43 ± 0.06 0.027 0.35 ± 0.09

Ratio (1.5 eVs/OP) 2.4 = (1.4/0.9)2 2.4 ~ 1.3 2.4 ~ 1.2

• A large, missing systematic contribution to the emittance growth is observed
• Difficult to explain entirely with the expected sources of blow-up



Impact of deconvolution algorithms
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• Observed systematics in the measured data, see “Impact of deconvolution 
algorithms” in F. Antoniou’s presentation, but also numerically:

Lo
ng

itu
di

na
l

G
au

ss
ia

n 
(0

.5
 e

Vs
)

Tr
an

sv
er

se
G

au
ss

ia
n 

(2
.5

 u
m

)

Distributions Quadrature
(Gauss. fit)
Emittance
Error [%]

Deconvolution
Emittance
Error [%]

6D Gaussian
εT = 2.5 um, εL= 0.5 eVs

+ 0.6 + 0.25
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• Observed systematics in the measured data, see “Impact of deconvolution 
algorithms” in F. Antoniou’s presentation, but also numerically:
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• Observed systematics in the measured data, see “Impact of deconvolution 
algorithms” in F. Antoniou’s presentation, but also numerically:

Distributions Quadrature
(Gauss. fit)
Emittance
Error [%]

Deconvolution
Emittance
Error [%]

6D Gaussian
εT = 2.5 um, εL= 0.5 eVs

+ 0.6 + 0.25

4D Gaussian
+ 2D Parabolic

εT = 2.5 um, εL= 0.5 eVs

+ 4.4 + 2.7

4D Gaussian
+ 2D Parabolic
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• What will change after LIU?
• Overview of hardware upgrades, target beam parameters, upgraded injection 

scheme and recent MD’s (low chromaticity and high intensity)

• Sources of emittance growth during transfer:
• Catalogue of (known) contributors and their weighting, with latest MD results
• Brightness measurements and BT-BTP transfer line re-matching
• The challenge of systematic errors, deconvolution and present uncertainties

• Conclusion and outlook:
• Looking to the future at 2 GeV and operation with large longitudinal emittance
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• Turn-by-turn measurements after injection have confirmed and quantified the 
dispersion dominated mismatch

• Significant H (rms) blow-up in PS of ~ 0.33 mm mrad measured on BCMS OP 
0.9 eVs compared to an expected blow-up of ~ 0.15 mm mrad:
• No known physical source can explain the relatively large blow-up observed

• Re-matching BT-BTP TL made no significant impact on filamented emittance:
• Same conclusion was reached after T-by-T SEM MD’s in early 2000’s [Ref7]

• Systematic errors play an important role in emittance measured from profiles: 
• Uncertainty in the optics parameters (e.g. β in PSB) and systematic errors in the 

momentum deconvolution algorithm (distribution dependent) are likely culprits

• No evidence yet that space-charge is driving the apparent blow-up



Outlook
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• Too early to state firmly the expected blow-up during transfer at 2 GeV with 
the apparent role played by systematic errors:
• Bright beams with large D make absolute emittance measurements challenging

• Lack of sensitivity to re-matching of the transfer line is concerning…
• Further studies are planned in 2019 to check impact of systematic errors: from 

changing (filamented) distributions, including simulations with space-charge
• Single coherent report to be published with full analysis of BGI and WS data

• Improved tools are needed to effectively de-convolute beam profiles
• Will need to use lessons learnt in LS2 and apply them in operation in Run 3
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Blow up from KFA14
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• PSB extraction kicker waveforms 
measured for all rings [ref3]:
• Beam-based measurements using 

short (σ = 10 ns) INDIV bunch
• Ripple < ±1.5%

R4

R2

R3

R1
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• PSB extraction kicker waveforms 
measured for all rings [ref3]:
• Beam-based measurements using 

short (σ = 10 ns) INDIV bunch
• Ripple < ±1.5%
• Blow-up depends on bunch length 

and estimated at <1% for LIU 
BCMS 

R2
LIU BCMS = 135 ns (4σ)

LIU STD = 205 ns (4σ)

± <1.5%
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• PSB extraction kicker waveforms 
measured for all rings [ref3]:
• Beam-based measurements using 

short (σ = 10 ns) INDIV bunch
• Ripple < ±1.5%
• Blow-up depends on bunch length 

and estimated at <1% for LIU 
BCMS 

• Beam-kicker synchronisation is 
an important commissioning step

R4

R2

R3

R1 R2
LIU BCMS = 135 ns (4σ)

± <1.5%

LIU STD = 205 ns (4σ)



Blow up from KFA10 and KFA20
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• Recombination kicker waveforms measured 
and emittance growth assessed [refX]:
• Beam-based measurements carried out using 

long bunches
• Rise-times limit length of bunches
• Vertical blow-up depends on bunch length
• Estimated blow-up depends on ring, worst-

case < 3%
• Worst-case LIU standard beam at 2 GeV (205 

ns) from 2 – 3% shown in table:

KFA Vertical blow-up [%]

R1 R2 R3 R4

BT1.KFA10 1.9 1.9 0 0

BT4.KFA10 0 0 1.9 1.9

BT2.KFA20 1.0 2.2 0.0 0.3

Total 2.1 2.9 1.9 1.9



Blow up from KFA45
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• Beam based measurements combined with PSpice model current to 
estimate emittance blow-up [ref5]:
• Measurements resolution limited (~5%)

Post-pulse



Blow up from KFA45
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• Beam based measurements combined with PSpice model current to 
estimate emittance blow-up [ref5]:
• Measurements resolution limited (~5%)
• Blow-up at 3.5% for certain bunches

• Next steps:
• Magnetic measurements made in tunnel 

at start of LS2 available, blow-up 
estimates to be reviewed

• Post-pulse ripple shown to be constant 
and does not scale with voltage

Post-pulse



• To elucidate the challenge we face with systematics, let’s consider what 
effective emittance blow-up is missing to give the measured values
• Assuming independent error sources, adding linearly:

• A large, missing systematic contribution to the emittance growth is observed
• Difficult to explain entirely with the expected sources of blow-up
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Measured H blow-up: ∆𝜀 unaccounted for?

∆𝜀missing= 𝜀PS,meas − 𝜀PSB,meas +
1
2
𝑀,
& ∆𝑝

𝑝

&

Beam type ∆𝜀missing for OP optics
[mm mrad]

∆𝜀missing for Re-matched optics
[mm mrad]

BCMS OP 0.18 ± 0.06 0.29 ± 0.09

BCMS 1.5 eVs 0.07 ± 0.06 0.32 ± 0.09



Dispersion mismatch vs. DP/P
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• Study of blow-up measured with wire-scanners using standard LHC25 
beam as function of longitudinal emittance:

• ∆𝜀	 ∝ ∆%
%

&
for large ∆𝑝

• Factor two larger mismatch observed
• Deconvolution/systematics in both

machines play a role
Technique MD [m1/2]

I = 1.6e12 p I = 2.0e12 p

Wire-scanner profile ∆𝜀
(Deconvolution of dispersive
component needed)

0.77 ± 0.003 0.74 ± 0.003

T-by-turn data (BPM/SEM) 0.40 ± 0.04

S. Albright & A. Oeftiger



Introducing significant betatronic mismatch
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• Deliberate mismatch to excite betatronic mismatch:



Sensitivity studies with mismatch of BT-QNO10
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• Systematic emittance blow-up studies

PSB WS

BTM SEM grids

BTM SEM grids

PSB WS



• Re-matching BT-BTP has no impact on filamented vertical emittance
measured 15 ms after injection using the wire-scanner:

LIU Workshop, 13-15 February 2019 Matthew Fraser

Measured V blow-up: BCMS 1.5 eVs

BCMS OP, DP = 0.9e-3
5th November 2018 7th November 2018
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• Emittance blow-up measurements are sensitive to systematic errors and appear 
unreliable
• Important to better understand role played by errors on optics functions, changing 

distributions with filamentation and deconvolution etc.

• Horizontal blow-up measured after filamentation is larger than expected from the 
observed envelope oscillations at injection:
• In other words, re-matching TL (validated by T-by-T measurements) has very little impact
• Same conclusion was reached after T-by-T SEM MD’s in early 2000’s
• Difficult to attribute the unknown blow-up source to imperfections (e.g. steering, kicker 

ripple, injection energy error, etc.)
• No blow-up seen in ~ ms after injection on WS measurements: indicates fast effects (< 2 

ms, comparable to profile measurement integration time) or systematic error

Summary of blow-up studies


