Characterisation of thick pixelated CZT sensors using MAXIPIX

Stergios Tsigaridas

lworid 2019, Kolympari, Crete, Greece. Tuesday 9th July, 2019

The European Synchrotron

Motivation for CZT

- ESRF in shutdown phase for its upgrade (P. Fajardo's talk this morning)
- Need for efficient detectors at moderate and high x-ray energies (30-100 keV)
- Research programme for high-Z sensors
- CZT could be a promising alternative
- Limitations? Leakage current? etc.

Property	Si	GaAs.	CdTe	CZT
Z (average)	14	32	50	49.1
Density (g cm ⁻³)	2.33	5.32	5.85	5.81
Energy gap (eV)	1.12	1.42	1.44	≥1.6
Intr. carrier conc. (cm ⁻³)	$\sim 10^{10}$	$2\cdot 10^6$	$\sim 10^7$	$\sim 10^7$
W-value (eV)	3.62	4.3	4.43	4.64

Ref: Data obtained from XCOM NIST database

The European Synchrotron

CZT module developement at ESRF

- Collaboration with IMEM (Parma)
- Redlen "high-flux" CZT
- Maxipix system (Timepix)
- Bump bonding by ADVACAM
- Wire bonding by HCM.SYSTREL

Sensor	Samples	Thickness (mm)	Pixel (µm)	Module id.
CZT	2	2	110	D140844 / tpxatl164
		2	110	D140845 / tpxatl165
CZT	2	2	55	D140531 / tpxatl166
		2	55	D140540 / tpxatl167

Maxipix readout system

Ref: C. Ponchut et al. 2011 JINST 6 C01069

- Developed by ESRF (Medipix2/Timepix)
- 1.4 kHz maximum frame rate
- $2 \cdot 10^5$ counts/pixel maximum count rate
- 0.29 ms dead time at 100 MHz clock
- \blacksquare Minimum threshold \sim 4 keV
- 11810 pixel counter depth

Leakage current vs bias voltage

No X-rays

Stability test

- COMET X-ray tube (up to 160 keV)
- W Anode/250 μ m W filter (\sim 60 keV)
- Tube settings (80 kV/8.0 mA)
- Detector 1.07 m away from source
- Ramp up voltage and X-rays on $E_{thl} = E_{beam}/2$

Flood images

CZT (55 µm) CZT (110 µm) 1.0 $_{\rm T}1.0$ 0 0 ■ Top: E_{beam} = 22 keV 50 0.8 25 0.8 e 100 i 150 50 Bot: E_{beam} = 60 keV 0.6 0.6 pixel 75-0.4 0.4 • $E_{thl} = E_{beam}/2$ 200 100 0.2 0.2 250 125 l_{0.0} L_{0.0} 100 200 50 100 0 0 No significant difference pixel pixel CZT (55 µm) CZT (110 µm) 1.0 $_{T}1.0$ 0 0 **Bias contact** 50 0.8 25 0.8 on the left 100 ×ia 150 50 0.6 0.6 pixel 75 0.4 0.4 200 100 0.2 0.2 250 125 0.0 100 200 50 100 0 0 pixel pixel Page 7 | Tuesday 9th July, 2019 | Stergios Tsigaridas ESRF The European Synchrotron

Relative signal-to-noise ratio (rSNR)

- Flat field correction needed due to spatial inhomogeneity
- Valid only for images taken at the same conditions
- Make use of rSNR to quantify its effectiveness

• Calculate rSNR with varying energy threshold

Modulation tranfer function (MTF) - presampling

- $E_{beam} = 60 \text{ keV}$
- Make use of slanted edge method
- Edge/line spread functions (ESF/LSF)
- $LSF(x) = \frac{d}{dx} \{ ESF(x) \}$
- $MTF(u) = |\mathcal{F} \{LSF(x)\}|$

Page 9 | Tuesday 9th July, 2019 | Stergios Tsigaridas

Mesh scans with micro-focused beam

- 30 keV monochromatic beam
- (₄Be) compound refractive lenses
- Beam spot << pixel size</p>
- Precise mapping of a sensor area
- Effective pixel shape

Page 10 | Tuesday 9th July, 2019 | Stergios Tsigaridas

Point spread function (PSF)

- Choose a single pixel within the scan area
- Extract the 1D PSF for various thresholds

Pi (µ	tch m)	E _{thl} (keV)	FWHM) (µm)
5	55	5	85.63
		15	60.37
		26	35.86
1	10	5	137.44
		15	105.82
		26	65.01
_			

Page 11 | Tuesday 9th July, 2019 | Stergios Tsigaridas

Threshold scans and single pixel spectra

- Align beam at the center of a pixel
- Vary the discriminator threshold
- Measure the number of counts for each threshold step
- The derivative of the threshold scan gives the single pixel energy spectrum
- The peak should correspond with the beam energy

Single pixel spectra of a 3×3 area

- CZT (2 mm, 110 μm)
- Crosscheck for calibration

1	2	3
4	5	6
7	8	9

The European Synchrotron

- Characterisation of "high-flux" CZT (Redlen) with X-rays up to 60 keV
- Stable performance over time, high spatial resolution despite the thickness
- Work in progress (DQE, CCE, $\mu\tau$, simulations, etc.)
- More tests with standard CZT (IMEM) and thick GaAs:Cr

- Characterisation of "high-flux" CZT (Redlen) with X-rays up to 60 keV
- Stable performance over time, high spatial resolution despite the thickness
- Work in progress (DQE, CCE, $\mu\tau$, simulations, etc.)
- More tests with standard CZT (IMEM) and thick GaAs:Cr

