

DEPARTMENT OF PHYSICS AND ASTRONOMY RADIATION PHYSICS GROUP

PTYCHOGRAPHY USING HYPERSPECTRAL X-RAY SENSORS: IMPLEMENTATION AND APPLICATION Frederic Van Assche

PTYCHOGRAPHY

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

1. Introduction

2. Software

3. Ptychography

4. Conclusions

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

UGENT CENTRE FOR X-RAY TOMOGRAPHY

Ptychography using Hyperspectral X-ray imaging

Ptychography using Hyperspectral X-ray imaging

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

HYPERSPECTRAL X-RAY DETECTORS

Photon counting hyperspectral

PTYCHOGRAPHY

CONCLUSIONS

HYPERSPECTRAL X-RAY DETECTORS

- pnCCD
- HEXITEC
- Mönch
- ePix
- Timepix

FLUX LIMITATIONS

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

Measuring a photon's energy

Detecting photons individually

Maximum flux rates are limited

Measuring a photon's energy

Detecting photons individually

Maximum flux rates are limited

PTYCHOGRAPHY

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

1. Introduction

2. Software

3. Ptychography

4. Conclusions

	000	1107	0.11
INI	RUU		11 N
	1.00		

PTYCHOGRAPHY

CONCLUSIONS

CORE PRINCIPLES

- 1. Stable and reliable
- 2. Every pixel of every frame processed and used in real time
- 3. Retain flexibility inherent in hyperspectral datastreams

Initial version

- Developed to replace pnCCD-based SLcam software
- Proven reliability track record over multiple beamtimes
- Network transparent collection of small single-purpose processes

PTYCHOGRAPHY

CONCLUSIONS

CORE PRINCIPLES

- 1. Stable and reliable
- 2. Every pixel of every frame processed and used in real time
- 3. Retain flexibility inherent in hyperspectral datastreams

Initial version

- Developed to replace pnCCD-based SLcam software
- Proven reliability track record over multiple beamtimes
- Network transparent collection of small single-purpose processes

CONCLUSIONS

NEW DEVELOPMENTS

Redesigned architecture

- Fully detector-agnostic: actual frame grabbing done in plugin requiring only small API
- Plugin based frame conditioning, processing and integration
- Central configuration and calibration store
- DAQ components autodiscover eachother

New detectors

- HEXITEC
- HEXITEC Quad

CONCLUSIONS

NEW DEVELOPMENTS

Redesigned architecture

- Fully detector-agnostic: actual frame grabbing done in plugin requiring only small API
- Plugin based frame conditioning, processing and integration
- Central configuration and calibration store
- DAQ components autodiscover eachother

New detectors

- HEXITEC
- HEXITEC Quad

- 1. Frame conditioning (CCD artefacts, dark current, bad pixels, ...)
- 2. Apply overall calibration (gains, ADC offsets, ...)
- 3. Select pixels above noise thresholds
- 4. Cluster finding and reconstruction (= charge sharing correction)
- 5. Event filtering and processing
- 6. Apply finetuning calibration

INC	тп		ווח	CTL	01
IN	IR	U			UN

PTYCHOGRAPHY

CONCLUSIONS

PERFORMANCE

- HEXITEC-sized 80x80 pixel frames, 16 bit per pixel
- 100k real frames replayed in loop from RAM
- Around 38 kHz frame rate processed in real time

Nearing 4 Gbps on single thread of i7-7700K 240 megapixel/s

- Still room for optimisations, focus was on functionally correct code for now
- Can be scaled up by spawning more worker processes
- ...or distributing over multiple machines

1 1 1 1	'n	n	n		cт	٦.
	к	U	IJ	U		

PTYCHOGRAPHY

CONCLUSIONS

PERFORMANCE

- HEXITEC-sized 80x80 pixel frames, 16 bit per pixel
- 100k real frames replayed in loop from RAM
- Around 38 kHz frame rate processed in real time

Nearing 4 Gbps on single thread of i7-7700K 240 megapixel/s

- Still room for optimisations, focus was on functionally correct code for now
- Can be scaled up by spawning more worker processes
- ...or distributing over multiple machines

- Full design-spec 9 kHz framerate available
- 800 eV FWHM @ 60 keV

- Full design-spec 9 kHz framerate available
- 800 eV FWHM @ 60 keV

PTYCHOGRAPHY

CONCLUSIONS

OUTLINE

CENTRE FOR X-RAY TOMOGRAPHY

1. Introduction

2. Software

3. Ptychography

4. Conclusions

Ptychography using Hyperspectral X-ray imaging

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

CONVENTIONAL IMAGING

FAR-FIELD PTYCHOGRAPHY

SOFTWA<u>RE</u>

PTYCHOGRAPH

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

Courtesy of Darren Batey – Diamond Light Source

11117	D 0	CT	ON
	81		11 N

FAR-FIELD PTYCHOGRAPHY

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

(c)

(d)

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

FAR-FIELD PTYCHOGRAPHY

PTYCHOGRAPHY

CONCLUSIONS

DIAMOND LIGHT SOURCE I13-1

- Fresnel Zone Plate (FZP) focusing optics
- pnCCD detector placed 4.05 m downstream of sample
- Main beam energy around 8339 eV Ni K-edge

CONCLUSIONS

SLCAM

SLcam specs

Device type	Photon counting CCD
Readout	Wire-bonded ASIC
Sensor material	450 µm Si
Pixel count	264×264
Pixel size	48 µm
Framerate	400 Hz
Energy FWHM	147 eV @ Mn K $lpha$

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

HYPERSPECTRAL PTYCHOGRAPHY

CONCLUSIONS

SETUP AND RESOLUTION CHECK

Parameters

- Beam: centered on 8339 keV, $\sim 1\,{
 m eV}$ bandwidth
- 6 µm beam size on sample
- Sample: Siemens star
- 16 x 16 sampling grid, 1.5 µm step size
- 80 s acquisition time per step

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

SETUP AND RESOLUTION CHECK

In final stage of review with Scientific Reports

Results

- Detector FWHM 172 eV at Ni K-edge
- Reconstructed resolution better than 200 nm

SOFTWARE

CONCLUSIONS

POLYCHROMATIC PTYCHOGRAPHY

Parameters

- Beam: 180 eV bandwidth
- Sample: Cu-Ni grid pair, 12.5 μm bar widths

Goal

Discriminating the Ni grid from the Cu grid from a single ptychographic acquisition using a pink beam spectrum

SOFTWARE

PTYCHOGRAPH

CONCLUSIONS

POLYCHROMATIC PTYCHOGRAPHY

In final stage of review with Scientific Reports

Below Ni-K

Above Ni-K

Difference

XRF

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

POLYCHROMATIC PTYCHOGRAPHY

In final stage of review with Scientific Reports

SOFTWARE

PTYCHOGRAPH

CONCLUSIONS

CHALLENGE 1: ENERGY CORRECTION

Problem

Ptychography reconstruction requires precisely defined setup parameters

- Optics behaviour is energy dependent
- In observed energy range: beam size from 11 μm to 2 μm
- Detector FWHM is great, but still finite
- Energy bins can actually contain majority of wrong energy events

PTYCHOGRAPHY

CONCLUSIONS

CHALLENGE 1: ENERGY CORRECTION

Problem

Ptychography reconstruction requires precisely defined setup parameters

- Optics behaviour is energy dependent
- In observed energy range: beam size from 11 μm to 2 μm
- Detector FWHM is great, but still finite
- Energy bins can actually contain majority of wrong energy events

Monochromatic source

ENERGY DECONVOLUTION

INTRODUCTION

SOFTWARE

ENERGY DECONVOLUTION

INTRODUCTION

SOFTWARE

INC	TDO	IDU	CT	ION	
	IRU	υu	ιLΠ	UN	

PTYCHOGRAPHY

CONCLUSIONS

ENERGY DECONVOLUTION

Solution

Deconvolute detector response using overlapping gaussians approximation:

$$\overline{E}_{\text{actual}} = \frac{\sigma_B^2 \cdot (E_{\text{bin}} - \mu_B)}{\sigma_B^2 + \sigma_D^2} + \mu_B$$

Solution

Deconvolute detector response using overlapping gaussians approximation:

$$\overline{E}_{\text{actual}} = \frac{\sigma_B^2 \cdot (E_{\text{bin}} - \mu_B)}{\sigma_B^2 + \sigma_D^2} + \mu_B$$

In final stage of review with Scientific Reports

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

CHALLENGE 2: CCD READOUT EFFECT

Problem

- Misplaced events due to CCD shift
- Similar intensity as diffraction patterns

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

CHALLENGE 2: CCD READOUT EFFECT

Possible solutions

- 1. "Flatfield" correction, difficult due to low counts
- 2. Central Beam Attenuator (CBA): reduce required dynamic range

PTYCHOGRAPHY

CONCLUSIONS

OUTLINE

CENTRE FOR X-RAY TOMOGRAPHY

1. Introduction

2. Software

3. Ptychography

4. Conclusions

	~ ~ .	
	_	
NIK		

CONCLUSIONS

CONCLUSIONS

Software

- Used reliably for multiple week-long experiments
- HEXITEC family now included
- Talking about loan of Mönch detector

Hyperspectral Ptychography

- First ever combination of ptychography with hyperspectral imaging
- Providing coherence using detector instead of source works
- Extracting a K-edge profile from a single acquisition is possible

DEPARTMENT OF PHYSICS AND ASTRONOMY RADIATION PHYSICS GROUP

THANK YOU!

Matthieu N. Boone Sander Vanheule Luc Van Hoorebeke Silvia Cipiccia Darren Batey

07-11/06/2020 Ghent, Belgium

Frederic Van Assche frederic.vanassche@ugent.be

Funded by FWO grant GOA0417N DLS beamtimes MG22099-1, MT20987-1 and MG23140-1

ARCHITECTURE

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

ARCHITECTURE

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

ARCHITECTURE

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

23/22

- 1. Frame conditioning (CCD artefacts, dark current, bad pixels, ...)
- 2. Apply overall calibration (gains, ADC offsets, ...)
- 3. Select pixels above noise thresholds
- 4. Cluster finding and reconstruction
- 5. Event filtering and processing
- 6. Apply finetuning calibration

PTYCHOGRAPHY

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

PTYCHOGRAPHY

CONCLUSIONS

Single

RAW FRAMES

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

"Common mode"

- Time-dependent "rolling pattern"
- Almost periodic
- Cause
 - Power supply ripple?
 - Clock jitter?
 - Clock mismatch?

Must be corrected in every frame

CONCLUSIONS

COMMON MODE REDUCTION

Iterative algorithm

- 1. Calculate μ and σ of line
- 2. Remove pixels $> 2\sigma$
- 3. Recalculate μ without excluded pixels
- 4. Repeat until converged (μ no longer decreasing)

CONCLUSIONS

CENTRE FOR X-RAY TOMOGRAPHY

CORRECTED FRAMES

- 1. Frame conditioning (CCD artefacts, dark current, bad pixels, ...)
- 2. Apply overall calibration (gains, ADC offsets, ...)
- 3. Select pixels above noise thresholds
- 4. Cluster finding and reconstruction
- 5. Event filtering and processing
- 6. Apply finetuning calibration

CONCLUSIONS

CLUSTER RECONSTRUCTION

- 1. Incident photon creates a charge cluster
- 2. Charge cluster gets trapped in one or more pixels
- 3. For each pixel all eight neighbours are checked
- 4. Neighbours above threshold are collected into an event
- 5. Event is stored with a total charge and center-of-mass location

CONCLUSIONS

CLUSTER RECONSTRUCTION

- 1. Incident photon creates a charge cluster
- 2. Charge cluster gets trapped in one or more pixels
- 3. For each pixel all eight neighbours are checked
- 4. Neighbours above threshold are collected into an event
- 5. Event is stored with a total charge and center-of-mass location

CONCLUSIONS

CLUSTER RECONSTRUCTION

- 1. Incident photon creates a charge cluster
- 2. Charge cluster gets trapped in one or more pixels
- 3. For each pixel all eight neighbours are checked
- 4. Neighbours above threshold are collected into an event
- 5. Event is stored with a total charge and center-of-mass location

CONCLUSIONS

CLUSTER RECONSTRUCTION

- 1. Incident photon creates a charge cluster
- 2. Charge cluster gets trapped in one or more pixels
- 3. For each pixel all eight neighbours are checked
- 4. Neighbours above threshold are collected into an event
- 5. Event is stored with a total charge and center-of-mass location

CLUSTER RECONSTRUCTION

- 1. Incident photon creates a charge cluster
- 2. Charge cluster gets trapped in one or more pixels
- 3. For each pixel all eight neighbours are checked
- 4. Neighbours above threshold are collected into an event
- 5. Event is stored with a total charge and center-of-mass location

SUPER-RESOLUTION

SOFTWARE

PTYCHOGRAPHY

CONCLUSIONS

Physical detector pixels

4x4 super-resolution

111	TD	OF	NIIC.	TIO	Δ1
- 112	пк	UI.			

PTYCHOGRAPHY

CONCLUSIONS

SUPER-RESOLUTION

- 1. Frame conditioning (CCD artefacts, dark current, bad pixels, ...)
- 2. Apply overall calibration (gains, ADC offsets, ...)
- 3. Select pixels above noise thresholds
- 4. Cluster finding and reconstruction
- 5. Event filtering and processing
- 6. Apply finetuning calibration