MULTISPECTRAL PHOTON-COUNTING FOR MEDICAL IMAGING AND BEAM CHARACTERIZATION

Erik Brücken¹

11.7.2019

¹on behalf of the consortium of research groups from HIP, Aalto, LUT and STUK.

Idea and motivation

For medical imaging we need photon-counting detectors that

- are capable of high radiation fluence rate (> 10^8 mm⁻²s⁻¹),
- have good timing resolution,
- have good stopping power,
- good energy discrimination.

Our approach: combining two worlds for something new

- In-house development of detectors using high Z materials.
- Readout technology and expertise from involvement in high energy physics experiments.

In-house detector development

History at HIP

- Radiation-hard silicon strip detectors.
- Detectors made of high-resistivity magnetic Czochralski silicon (MCz).
- Silicon strip detectors (n-type) for High Luminosity LHC.
- Defect studies and quality assurance of semiconductor detectors.
- Mechanics and comissioning of the current CMS Tracking detector.

Modern processing techniques

- Access to Micronova, Centre for Micro and Nanotechnology in Finland.
- Present key technology: Atomic Layer Deposition (ALD).

Local detector characterization techniques

• Probestations, scanning Transient Current Technique (TCT), IR-imaging and spectroscopy scanner.

Cadmium Telluride

Material

- High stopping power (high Z).
- Usable at room temperatures.
- Wide band gap of 1.44 eV (usable at room temperatures).
- Very brittle, difficult to grow.
- Processing temperatures $< 150^{\circ}$ C.
- Not all chemicals from Si processing can be used.

Crystals

- We use currently CdTe crystals of size $1\,\times\,1~\text{cm}^2.$
- 1 and 2 mm thickness available.

from www.5nplus.com/cadmium-telluride.html

Quality assurance

CdTe material

Max. 2 inch ingot available, not fully monocrystalline. Come with various crystallographic defects that affect detector performance:

- Grain and twin boundaries
- Fractures
- Tellurium inclusions, etc ...

Quality assurance

3D characterization using IR scanning microscope

- Resolution close to 1μ m (diffraction limit)
- Spectroscopy possible
- Result (with aid of neural networks): Detailed 2/3D maps of defect occurrences.

see A. Winkler et al., NIM A 924 (2019) 28

from Szeles et. al., doi:10.1117/12.683552.

Quality assurance

Under investigation

- How do Te inclusions affect locally the charge collection efficiency (CCE)?
- Currently we study CCE using scanning TCT and micro proton beam (IBIC) in collab. with Ruđer Bošković Institute.
- Goal: correlation between local Te inclusions and drop of CCE.

see M. Kalliokoski et al., IEEE Trans. Nucl. Sci., 66, 5 (2019)

Example of scanning through CdTe crystal

Size: 200 \times 160 $\mu{\rm m};$ 15 $\mu{\rm m}$ step per frame.

Erik Brücken iV

iWoRiD 2019 6/ 21

Atomic Layer Deposition

ALD principle

- Self-terminating gas-solid reactions.
- E.g.: layer by layer growing of Al_2O_3 on high-resistivity MCz silicon in Beneq TFS-500 ALD reactor. (presented at VCI conference by Jennifer Ott, paper submitted)

Details of aluminium oxide growth at $120^{\circ}C$

- First $Al(CH_3)_3$ pulse as metal precursor followed by N₂ purge.
- Next H_2O pulses followed by N_2 purge.
- Repeating cycles until sufficient layer thickness (here around 90 nm).

Processing of CdTe pixel sensor

- a) Low temp. ALD of AI_2O_3
- b,c,d) Alignment marks (TiW)
- e,f,g) Opening contacts to ALD passivation layer (wet chemical etching)
 - h,i) Contact metallization (sputtering of TiW and Au)
 - j) Lift-off process
- k,l,m) Backside processing similar to front side with TiW sputtering
 - n,o) Electroless Ni growth and Au metallization, UBM

The CdTe pixel sensor

Ingredients

- Detector grade CdTe crystal, (111) orientation.
- Resistivity $> 10^9\,\Omega cm.$
- Size: $10 \times 10 \text{ mm}^2$.
- Thickness 1 mm.

The ready sensor

- Schottky type detector.
- 52×80 pixels in 26 double column pattern.
- Layout matching PSI46 ROC structure.
- Patterned backside

PSI46dig ROC

Readout chip for prototypes

- CMOS ASIC developed by PSI for the pixel sensors of the CMS tracker.
- 4160 pixels (52 \times 80) in 8 \times 7.6 mm 2 active area.
- Photo counting capable.
- Full pulse processing per pixel.
- Charge threshold of 1.5 ke⁻, resolution $\sim\!\!120\,e^{-}.$
- Radiation hardness > 2.5 Mrad.
- Available with Indium bumps for low-T processing as required with CdTe.
- Other chips optional, e.g. RD53a chip.

see: B. Meier 2011 JINST 6 C01011,

D. Hits & A. Starodumov 2015 JINST 10 C05029

Prototype Detector

Prototype

• Ready single detector, successfully bump bonded (Indium).

Detector readout

- Currently we use the Detector Test Board (DTB) developed for the PSI46 ROC.
- Features: Altera FPGA, 2x64MB DDR2 RAM, Gigabit Ethernet port, USB 2.0.
- Programmable analog and digital outputs for monitoring.
- Deserializer for 160 MHz and 400 MHz signals.
- Prototype wire bonded to PCB.
- Connected to DTB via passive FEC.

Results

Testing the prototype

- First results look promising.
- Good energy resolution (< 2%) for $^{137}\mathrm{Cs}$ (11.9 keV for the 662 keV gamma emission line.

What are my colleagues doing? For example at Aalto University

Possible application: Imaging detector for Boron Neutron Capture Therapy (BNCT).

Algorithms for BNCT: The probabilistic model.

Well, let's first introduce Boron Neutron Capture Therapy in short.

Erik Brücken iWoRiD 2019 13/21

Motivation for BNCT

Plot on left from J Clin Oncol. 2014 Sep 10;32(26):2855-63, graphics on right from Kageji et al., JMI 61 3-4 (2014).

Erik Brücken iWoRiD 2019 14/21

Example of application for our detector

Boron Neutron Capture Therapy (BNCT)

- Idea of BNCT: Adding ¹⁰B to drug that attaches to cancer cells. Thermal neutron injected to patient captured by ¹⁰B. Violent reaction kills cancer cells (${}^{10}B + n \rightarrow {}^{7}Li + \alpha + \gamma$).
- PC detectors can shed light on ratio between cancer and healthy cells. Can monitor spatial and temporal development.
- Required for online dosimetry, the last missing piece for full acceptance as alternative radiation therapy.

Challenges

- For imaging we can use direct gammas from BNC or scattered neutrons.
- Neutrons will be caught by ¹¹³Cd and resulting gamma detected (558 keV).
- Problem: we do not have a detector with anti-scatter grid for neutrons.

Using standard procedure

At Aalto University

Algorithms for Boron Neutron Capture Therapy: The probabilistic model

- Measurement of the location of BNC events \mathbf{x}^b inside sample.
- Signal for each pixel in detector from BNC events

$$\mathbf{y}^{b} = \mathbf{I}_{0} A \mathbf{x}^{b} + \varepsilon,$$

where I_0 is the total number of neutrons, A a measurement matrix, and the normal distributed measurement noise $\varepsilon \propto \mathcal{N}(0, \sigma_{\varepsilon}^2 I)$ with the identity matrix I.

• Next we introduce Gaussian prior for \mathbf{x}^b ,

$$p(\mathbf{x}^b) \propto \mathcal{N}(\hat{\mathbf{x}}^b, \sigma^2_{\mathbf{x}^b} I),$$

where $\hat{\mathbf{x}}^b$ is the mean of \mathbf{x}^b .

The probabilistic model

• Now we construct the likelihood function:

 $p(\mathbf{y}^b \mid \mathbf{x}^b) \propto \mathcal{N}(0, \, \sigma_{arepsilon}^2 I)$

• Then, the posterior distribution has the following form:

 $p(\mathbf{x}^b \mid \mathbf{y}^b) \propto p(\mathbf{y}^b \mid \mathbf{x}^b) p(\mathbf{x}^b)$

At Lappeenranta University of Technology LUT

The High Density Interconnect

- New HDI for RD53a chip.
- Can host up to 4 detectors.
- FPGA board for low level communication between ROCs and PC.

BNCT facility

BNCT setup

Currently a BNCT facility is being built at the Helsinki University Hospital in collaboration with Neutron Therapeutics.

- 2.6 MV / 30 mA Proton Accelerator.
- Neutron generating target.
- Beam Shaping Assembly.
- Moving table for positioning.

Accelerator in accreditation phase by radiation safety authority. Clinical trials start 2020.

Test of detector array under real conditions. Key interest: 478 keV gamma-ray from BNC reactions.

Conclusions and outlook

Achievements

- CdTe pixel detector prototypes successfully manufactured and tested.
- Started production of new CdTe detectors for detector array.
- Algorithms for localizing BNCT events advancing.

Next

- Building detector array based on PSI46dig ROC.
- Preparing for testing array in radiation beams i.e. in the BNCT facilities of the nearby University hospital.