

Prototype single-ended and pseudo-differential charge processing circuits for micro-strip silicon and gaseous sensors read-out

Weronika Zubrzycka, Krzysztof Kasinski

AGH University of Science and Technology, Department of Measurement and Electronics Av. Mickiewicza 30, 30-059 Cracow, Poland

zubrzycka@agh.edu.pl

21st International Workshop on Radiation Imaging Detectors, July 7-12, 2019, Kolymbari, Chania, Crete, Greece.

Background

The Compressed Baryonic Matter (CBM) experiment-one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in

Darmstadt

Facility for Antiproton

and Ion Research

in Europe GmbH

[1-2]

Tracking detection stations:

- Semiconductor strip detectors / gaseous detectors
- Multichannel readout electronics (Front-End)
- Radiation tolerant design
- Detection station within magnetic field

Detectors read-out electronics: Noise sources

- various series resistors' (sensor's metal strip, cable, interconnecomponents of the: a) current noise, b) voltage noise.
 on-chip) thermal noise.
- 3. series 1/f (or flicker) noise:
- <u>CSA input transistor flicker (1/f) noise (M1f).</u>

$$ENC^{2} = ENC_{i}^{2} + ENC_{w}^{2} + ENC_{1/f}^{2} \rightarrow$$

$$ENC^{2} = \tau_{p} \cdot A_{i} \cdot i_{n}^{2} + \frac{1}{\tau_{p}} \cdot v_{n}^{2} \cdot A_{w} \cdot C_{T}^{2} + A_{1/f} \cdot v_{nf}^{2} \cdot C_{T}^{2}$$

$$ENC^{2} = A_{w} \frac{1}{\tau_{p}} \frac{4kT\gamma}{g_{m}} C_{T}^{2} + A_{f}K_{f}C_{T}^{2} + A_{i}\tau_{p} [2q(I_{det} + I_{fb}) + \frac{4kT}{R_{bias}} + \frac{4kT}{R_{fb}}]$$

detector leakage 5 nA.

Noise optimization - filters

ASIC: Weighting coefficients of filters and peaking time can be used for multi-dimensional ENC minimization based on given conditions.

	A_{w}	$A_{1/f}$	A _i
CR-RC	0.92	3.69	0.92
CR-RC ²	0.85	3.41	0.64
CR-RC ³	0.93	3.32	0.52
CR-RC ⁴	1.02	3.27	0.45
CR ² -RC	1.03	4.70	1.00
CR ² -RC ²	1.16	4.89	0.72
Complex conjugate poles, 3 rd order	0.85	3.39	0.61
Complex conjugate poles, 5 th order	0.96	3.27	0.45

- $\tau_{\scriptscriptstyle D}$, shaper types and order are used for design of application specific circuit (various current/voltage noise ratios)
- making circuit more **universal** (changing/unknown parameters)

Leakage current

Power Supply Rejection Ratio

1 T superconducting

- Designed and fabricated in Q3 2018 using 180 nm process
- Area: 1.5x1.5 mm²
- 8 channels (4x single-ended, 4x differential)
- Switchable operation modes: 16 for single-ended and 4 for differential channels (various feedback and filters architectures, two polarities)
- Power (all channels): 88 mW (single-ended: ~4.62 mW/ch, differential: ~12.31 mW/ch)

ASIC layout

ASIC photograph

60 µm

Pseudo-differential channel architecture

125 µm

		Single-ended		Differential		
		Electrons	Holes	Electrons	Holes	
)BACK E	MOS in linear region					
FEEC TYP	Double-polarity Krummenacher*	for negative leakage X for positive leakage		X		
CSA	Rummendener					
PER ECTURE	CR-RC ²			>		
SHAI ARCHITE	Complex Conjugate Poles 3 rd order					
Polarit	y Selection Circuit	🗸 (ON)	🗸 (OFF)	N	/A	

*separate compensation for current flowing into the CSA input and for current flowing from the CSA input

Q_{in} (fC)

time (μ s) 16

Single-ended Slow Shaper Gain (Polarity: Electrons / Holes)

SH TYPE FB TYPE	MOS transistor	Krummenacher
CR-RC ²	35 mV/fC (e ⁻) 32 mV/fC (e ⁺)	35 mV/fC (e ⁻) 32 mV/fC (e ⁺)
CCP 3 rd order	36 mV/fC (e ⁻) 32 mV/fC (e ⁺)	36 mV/fC (e ⁻) 32 mV/fC (e ⁺)

Differential Slow Shaper Gain (Polarity: Electrons / Holes)

SH TYPE	MOS transistor
CR-RC ²	35 mV/fC (e ⁻) 34 mV/fC (e ⁺)
CCP 3 rd order	33 mV/fC (e ⁻) 32 mV/fC (e ⁺)

Feedback verification

Feedback resistance vs. reference current 140 AGH electrons - electrons, Krummenacher - negative - holes 120 -- electrons, Krummenacher - positive 35 -- holes, Krummenacher - negative -- holes, Krummenacher - positive 100 30 R_{fb} (M Ω) (บบ)⁴¹25 80 60 20 40 20 15 0 25 30 5 10 15 20 35 40 2.5 3.5 2 3 4 4.5 5 reference current (μ A) reference current (μ A) CSA output waveforms 602 568 white an interest of the statement of the statement 566 600 SE CSA output (electrons) (mV) 88 06 55 65 96 56 86 56 I_{bias} = 2 uA $I_{bias} = 5 \, uA$ Reference current range = 2.5 uA bias = 10 uA bias = 3 uA bias = 20 uA CSA (I_{bias} = 3.5 uA bias 554 = 30 uA I_{bias} = 4 uA bias ш 0 552 = 40 uA bias = 4.5 uA bias = 50 uA bias 586 = 5 uA bias = 64 u/ 550 bias 584 548 10 12 6 0 2 8 14 16 18 20 4 8 10 12 20 0 2 4 6 14 16 18 time (µs)

time (μ s)

Waveforms acquired for various leakage current values flowing into/from the CSA input

time (μ s)

MOS transistor in linear region CSA output waveforms

Switched double-polarity Krummenacher circuit CSA output waveforms

Leakage current compensation

250

SE, CR. RC2 MOS 1

(plus 2.5 pF of PCB traces capacitanes)

16

DIFF. CCD

SF. CCP. MOS.

Leakage with pulsed reset -> problems

- Leakage can be opposite polarity (e.g. MOS-based ESD protection circuit)
 - ✓ other options: ,,diode" (preparation of configurable cells needed)
- Power supply noise: can be an issue in sophisticated systems:
 - ✓ ultra low-noise LDOs can not be used (radiation);
 - ✓ LC-filtering not feasible in tracking detection stations (magnetic field);

• Configurable shaper type:

- ✓ area penalty;
- ✓ helps adapt noise to required level;
- \checkmark for varying contributions of voltage and current noise
- ✓ next step: configurable peaking time.

switchable Krummenacher circuit

> Supply noise rejection by differential shaping (with CSA replica)

Thank you for your attention.

- Heuser, J., Moeller, W., Pugatch, V., Senger, P., Schmidt, C. J., Sturm, C., & Frankenfeld, U. (Eds.). (2013). [GSI Report 2013-4] Technical Design Report for the CBM Silicon Tracking System (STS). Darmstadt: GSI. <u>http://repository.gsi.de/record/54798</u>
- 2. J. Heuser, W. Müller, V. Pugatch, P. Senger, C.J. Schmidt, C. Sturm, U. Frankenfeld, eds. [GSI-2013-05499] Technical Design Report for the CBM Silicon Tracking System (STS), GSI, Darmstadt, 2013. http://repository.gsi.de/record/54798.
- 3. O. Bertini, A. Lymanets, *Systematic study of sensor properties,* CBM Progress Report 2016, GSI, Darmstadt.
- Soltveit, H. K., Stachel, J., Braun-Munzinger, P., Musa, L., Gustafsson, H. A., Bonnes, U., ... Lang, S. (2012). The PreAmplifier ShAper for the ALICE TPC detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 676, 106–119. <u>https://doi.org/https://doi.org/10.1016/j.nima.2012.02.012</u>
- 5. W. Zubrzycka, K. Kasinski, Noise considerations for the STS/MUCH readout ASIC, CBM Progress Report 2017, p. 34 Darmstadt (2018).
- 6. Weronika ZUBRZYCKA, Krzysztof KASIŃSKI, "Leakage current-induced effects in the silicon microstrip and gas electron multiplier readout chain and their compensation method", Journal of Instrumentation, ISSN 1748-0221. 2018 vol. 13 art. no. T04003, s. [2], 1–10.
- K. KASIŃSKI, P. Koczon, S. Ayet, S. Löchner, C.J. Schmidt, "System-level considerations for the front-end readout ASIC in the CBM experiment from the power supply perspective", Journal of Instrumentation (2017) vol. 12 art. no. C03023